3.已知隨機(jī)變量X是分布列如表,則E(2X+1)=( 。
 X 1 2
 P 0.3 0.7
A.4.4B.0.6C.0.3D.1.7

分析 根據(jù)條件中所給的隨機(jī)變量的分布列,可以寫出變量的期望,對于E(2X+1)的結(jié)果,需要根據(jù)期望的公式E(ax+b)=aE(x)+b,代入前面做出的期望,得到結(jié)果.

解答 解:由條件中所給的隨機(jī)變量的分布列可知
EX=1×0.3+2×0.7=1.7,
∵E(2X+1)=2EX+1
∴E(2X+1)=2×1.7+1=4.4.
故選:A.

點評 本題考查離散型隨機(jī)變量的分布列和期望,考查具有一定關(guān)系的變量之間的期望的關(guān)系,是一個基礎(chǔ)題,是運(yùn)算量很小的一個問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆陜西漢中城固縣高三10月調(diào)研數(shù)學(xué)(文)試卷(解析版) 題型:解答題

已知橢圓)的離心率,且橢圓經(jīng)過點,直線與橢圓交于不同的兩點,

(1)求橢圓的方程;

(2)若△的面積為1(為坐標(biāo)原點),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知各項均不為零的數(shù)列{an},定義向量$\overrightarrow{{c}_{n}}$=(an,an+1),$\overrightarrow{_{n}}$=(n,n+1),n∈N*.下列命題中真命題是( 。
A.若任意n∈N*總有$\overrightarrow{{c}_{n}}$⊥$\overrightarrow{_{n}}$成立,則數(shù)列{an}是等比數(shù)列
B.若任意n∈N*總有$\overrightarrow{{c}_{n}}$∥$\overrightarrow{_{n}}$成立,則數(shù)列{an}是等比數(shù)列
C.若任意n∈N*總有$\overrightarrow{{c}_{n}}$⊥$\overrightarrow{_{n}}$成立,則數(shù)列{an}是等差數(shù)列
D.若任意n∈N*總有$\overrightarrow{{c}_{n}}$∥$\overrightarrow{_{n}}$成立,則數(shù)列{an}是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax2+(2-a2)x-alnx,(a∈R).
(1)a=-1時,求函數(shù)f(x)的極值;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)當(dāng)函數(shù)f(x)恰有一個零點時,分析a的取值情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知扇形的圓心角為120°弧長為2cm,則這個扇形的面積等于$\frac{3}{π}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.隨著IT業(yè)的迅速發(fā)展,計算機(jī)也在迅速更新?lián)Q代,平板電腦因使用和移動便攜以及時尚新潮性,而備受人們尤其是大學(xué)生的青睞,為了解大學(xué)生購買平板電腦進(jìn)行學(xué)習(xí)的情況,某大學(xué)內(nèi)進(jìn)行了一次匿名調(diào)查,共收到1500份有效試卷,調(diào)查結(jié)果顯示700名女同學(xué)中有300人,800名男同學(xué)中有400人,擁有平板電腦
(Ⅰ)完成下列列聯(lián)表:
  男生 女生 總計
 擁有平板電腦   
 沒有平板電腦   
 總結(jié)   
(Ⅱ)分析是否有99%的把握認(rèn)為購買平板電腦與性別有關(guān)?
附:獨立性檢驗臨界值表;
 P(x2≥k0 0.10 0.05 0.25 0.010 0.0050.001 
 k0 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$;,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.拋物線x2=4y上一點P(a,1)到焦點的距離是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=cos2x-$\sqrt{2}$sinx-$\frac{1}{2}$,π≤x≤$\frac{3π}{2}$的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,a,b,c分別為角A,B,C所對的邊.已知sinC=$\frac{2}{3}$sinB,c=2,cosA=$\frac{5}{6}$.
(Ⅰ)求a的值;
(Ⅱ)求sin(2A-$\frac{π}{6}$)的值.

查看答案和解析>>

同步練習(xí)冊答案