【題目】已知拋物線(xiàn),過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)兩點(diǎn).

1)若直線(xiàn)平行于軸,,求拋物線(xiàn)的方程;

2)對(duì)于(1)條件下的拋物線(xiàn),當(dāng)直線(xiàn)的斜率變化時(shí),證明

【答案】1

2)證明見(jiàn)解析

【解析】

1)由直線(xiàn)平行于軸可知是以為頂點(diǎn)的等腰三角形,聯(lián)立直線(xiàn)與拋物線(xiàn)的方程并利用三角形面積公式列方程,解得的值,即得拋物線(xiàn)的方程;

2)聯(lián)立直線(xiàn)與拋物線(xiàn)的方程,利用根與系數(shù)的關(guān)系及斜率公式得到,即得,利用三角形面積公式得到線(xiàn)段比,即得證.

解:(1)當(dāng)直線(xiàn)平行于軸時(shí),直線(xiàn)的方程為是以為頂點(diǎn)的等腰三角形,

聯(lián)立方程,得消去,得

所以,解得,

所以?huà)佄锞(xiàn)的方程為

2)欲證,

只需證

由題意可知直線(xiàn)的斜率存在,

故可設(shè)直線(xiàn)的方程為,

聯(lián)立方程,得

消去,得

所以直線(xiàn)的斜率

直線(xiàn)的斜率,

,

所以直線(xiàn)的傾斜角互補(bǔ),

所以

,

所以

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020110日,引發(fā)新冠肺炎疫情的COVID-9病毒基因序列公布后,科學(xué)家們便開(kāi)始了病毒疫苗的研究過(guò)程.但是類(lèi)似這種病毒疫苗的研制需要科學(xué)的流程,不是一朝一夕能完成的,其中有一步就是做動(dòng)物試驗(yàn).已知一個(gè)科研團(tuán)隊(duì)用小白鼠做接種試驗(yàn),檢測(cè)接種疫苗后是否出現(xiàn)抗體.試驗(yàn)設(shè)計(jì)是:每天接種一次,3天為一個(gè)接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)抗體的概率為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)抗體與上次接種無(wú)關(guān).

1)求一個(gè)接種周期內(nèi)出現(xiàn)抗體次數(shù)的分布列;

2)已知每天接種一次花費(fèi)100元,現(xiàn)有以下兩種試驗(yàn)方案:

①若在一個(gè)接種周期內(nèi)連續(xù)2次出現(xiàn)抗體即終止本周期試驗(yàn),進(jìn)行下一接種周期,試驗(yàn)持續(xù)三個(gè)接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為元;

②若在一個(gè)接種周期內(nèi)出現(xiàn)2次或3次抗體,該周期結(jié)束后終止試驗(yàn),已知試驗(yàn)至多持續(xù)三個(gè)接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為元.

比較隨機(jī)變量的數(shù)學(xué)期望的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)的值;

2)若在定義域內(nèi)有唯一的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)分別是橢圓的左頂點(diǎn)和上頂點(diǎn),為其右焦點(diǎn),,且該橢圓的離心率為;

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)點(diǎn)為橢圓上的一動(dòng)點(diǎn),且不與橢圓頂點(diǎn)重合,點(diǎn)為直線(xiàn)軸的交點(diǎn),線(xiàn)段的中垂線(xiàn)與軸交于點(diǎn),若直線(xiàn)斜率為,直線(xiàn)的斜率為,且為坐標(biāo)原點(diǎn)),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐中,,,,.有以下結(jié)論:①三棱錐的表面積為;②三棱錐的內(nèi)切球的半徑;③點(diǎn)到平面的距離為;其中正確的是(

A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直三棱柱中,,且,點(diǎn)D,EF分別為,,BC中點(diǎn).

1)求證:平面;

2)若,求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為.(為參數(shù))以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線(xiàn)的極坐標(biāo)方程為.

1)求的直角坐標(biāo)和 l的直角坐標(biāo)方程;

2)把曲線(xiàn)上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的倍,縱坐標(biāo)伸長(zhǎng)為原來(lái)的倍,得到曲線(xiàn)上動(dòng)點(diǎn),求中點(diǎn)到直線(xiàn)距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)和函數(shù).

1)若曲線(xiàn)處的切線(xiàn)過(guò)點(diǎn),求實(shí)數(shù)的值;

2)求函數(shù)的單調(diào)區(qū)間;

3)若不等式對(duì)于任意的恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,分別是棱上的點(diǎn)(點(diǎn)不同于點(diǎn)),且,為棱上的點(diǎn),且

求證:(1)平面平面

2平面

查看答案和解析>>

同步練習(xí)冊(cè)答案