【題目】已知點,分別是橢圓的左頂點和上頂點,為其右焦點,,且該橢圓的離心率為;
(1)求橢圓的標(biāo)準方程;
(2)設(shè)點為橢圓上的一動點,且不與橢圓頂點重合,點為直線與軸的交點,線段的中垂線與軸交于點,若直線斜率為,直線的斜率為,且(為坐標(biāo)原點),求直線的方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)判斷在上的零點的個數(shù),并說明理由.(提示:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)當(dāng)時,求函數(shù)在區(qū)間上的最值;
(Ⅱ)若,是函數(shù)的兩個極值點,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年下半年以來,各地區(qū)陸續(xù)出臺了“垃圾分類”的相關(guān)管理條例,實行“垃圾分類”能最大限度地減少垃圾處置量,實現(xiàn)垃圾資源利用,改善垃圾資源環(huán)境,某部門在某小區(qū)年齡處于歲的人中隨機地抽取人,進行了“垃圾分類”相關(guān)知識掌握和實施情況的調(diào)查,并把達到“垃圾分類”標(biāo)準的人稱為“環(huán)保族”,得到如圖示各年齡段人數(shù)的頻率分布直方圖和表中的統(tǒng)計數(shù)據(jù).
組數(shù) | 分組 | “環(huán)保族”人數(shù) | 占本組的頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 |
(1)求、、的值;
(2)根據(jù)頻率分布直方圖,估計這人年齡的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值代替,結(jié)果按四舍五入保留整數(shù));
(3)從年齡段在的“環(huán)保族”中采取分層抽樣的方法抽取人進行專訪,并在這人中選取人作為記錄員,求選取的名記錄員中至少有一人年齡在中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知箱中裝有10個不同的小球,其中2個紅球、3個黑球和5個白球,現(xiàn)從該箱中有放回地依次取出3個小球.則3個小球顏色互不相同的概率是_____;若變量ξ為取出3個球中紅球的個數(shù),則ξ的數(shù)學(xué)期望E(ξ)為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,,側(cè)面為矩形,.將繞翻折至,使在平面內(nèi).
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過點的直線交拋物線于兩點.
(1)若直線平行于軸,,求拋物線的方程;
(2)對于(1)條件下的拋物線,當(dāng)直線的斜率變化時,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為.(為參數(shù))以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,點的極坐標(biāo)為,直線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)和 l的直角坐標(biāo)方程;
(2)把曲線上各點的橫坐標(biāo)伸長為原來的倍,縱坐標(biāo)伸長為原來的倍,得到曲線,為上動點,求中點到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)x,y滿足x+4y=2.
(1)若|1+y|<|x|﹣2,求x的取值范圍;
(2)若x>0,y>0,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com