分析 (1)n≥2時(shí),Sn=$\frac{3}{2}$(an-1),Sn-1=$\frac{3}{2}$(an-1-1),兩式相減即可得出an=3an-1,即可得出an.
(2)利用“分組求和法”即可得出Tn.
解答 解:(1)n≥2時(shí),Sn=$\frac{3}{2}$(an-1),Sn-1=$\frac{3}{2}$(an-1-1),
兩式相減得an=$\frac{3}{2}$(an-an-1),
∴an=3an-1,又S1=$\frac{3}{2}$(a1-1),得到a1=3,
∴an=3n,
又?jǐn)?shù)列{bn}滿足bn+1=$\frac{1}{4}$bn,且b1=4.
∴bn=42-n.
(2)由(1)可知:cn=an+log2bn=3n+log242-n=3n+log224-2n=3n+(4-2n).
Tn=2+31+0+32+(-2)+33+…+(4-2n)+3n=(31+32+33+…+3n)+(2+0-2-4…+4-2n)=$\frac{3(1-{3}^{n})}{1-3}$+4n-n(n+1)=$\frac{3}{2}({3}^{n}-1)$+3n-n2.
點(diǎn)評 本題考查了遞推式的應(yīng)用、“分組求和”、等比數(shù)列、等差數(shù)列的前n和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (4,-4) | B. | (6,8) | C. | (5,12) | D. | (3,11) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | e | B. | -e | C. | $\frac{1}{e}$ | D. | -$\frac{1}{e}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{7}{10}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
年齡分組 | A項(xiàng)培訓(xùn)成績優(yōu)秀人數(shù) | B項(xiàng)培訓(xùn)成績優(yōu)秀人數(shù) |
[20,30) | 27 | 16 |
[30,40) | 28 | 18 |
[40,50) | 26 | 9 |
[50,60] | 6 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4\sqrt{3}}{3}$ | B. | $\frac{16\sqrt{3}}{3}$ | C. | $\frac{32\sqrt{3}}{3}$ | D. | $\frac{64\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com