A. | $\frac{4\sqrt{3}}{3}$ | B. | $\frac{16\sqrt{3}}{3}$ | C. | $\frac{32\sqrt{3}}{3}$ | D. | $\frac{64\sqrt{3}}{3}$ |
分析 拋物線y2=8x的焦點為F(2,0),由拋物線的定義可知:|AF|=|AD|,|BC|=|BF|,則|AB|=2|AE|,直線AB的傾斜角為60°,利用點斜式方程,求得直線AB的方程,與拋物線方程聯(lián)立消去y,進而跟韋達定理求得x1+x2的值,則丨AB丨=x1+x2+p=$\frac{20}{3}$+4=$\frac{32}{3}$,利用點到直線的距離公式及三角形的面積公式即可求得△AOB的面積.
解答 解:拋物線y2=8x的焦點為F(2,0),由拋物線的定義可知:|AF|=|AD|,|BC|=|BF|,
過B做BE⊥AD,
由$\overrightarrow{AF}=3\overrightarrow{FB}$,則丨$\overrightarrow{AF}$丨=丨$\overrightarrow{FB}$丨,
∴|AB|=2|AE|,由拋物線的對稱性,不妨設(shè)直線的斜率為正,
∴直線AB的傾斜角為60°,直線AB的方程為y=$\sqrt{3}$(x-2),
聯(lián)立直線AB與拋物線的方程可得:$\left\{\begin{array}{l}{y=\sqrt{3}(x-2)}\\{{y}^{2}=8x}\end{array}\right.$,整理得:3x2-20x+12=0,
由韋達定理可知:x1+x2=$\frac{20}{3}$,則丨AB丨=x1+x2+p=$\frac{20}{3}$+4=$\frac{32}{3}$,
而原點到直線AB的距離為d=$\frac{丨2\sqrt{3}丨}{\sqrt{1+(\sqrt{3})^{2}}}$=$\sqrt{3}$,
則三角形△AOB的面積S=$\frac{1}{2}$•丨AB丨•d=$\frac{1}{2}$•$\frac{32}{3}$•$\sqrt{3}$=$\frac{16\sqrt{3}}{3}$,
∴當直線AB的傾斜角為120°時,同理可求S=$\frac{1}{2}$•丨AB丨•d=$\frac{1}{2}$•$\frac{32}{3}$•$\sqrt{3}$=$\frac{16\sqrt{3}}{3}$,.
故選B.
點評 本題考查拋物線的簡單幾何性質(zhì),考查拋物線的焦點弦公式,三角形面積公式及點到直線的距離公式,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{243π}{16}$ | B. | $\frac{81π}{16}$ | C. | $\frac{81π}{4}$ | D. | $\frac{27π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com