4.畫出以下函數(shù)圖象:
(1)y=|log2(x-1)|;
(2)y=log${\;}_{\frac{1}{2}}$|x-1|

分析 (1)先作出y=log2(x-1)的圖象,圖象在x軸下方的作關(guān)于x軸對稱;
(2)先作y=log${\;}_{\frac{1}{2}}$|x|的圖象,然后右移1個單位即可.

解答 (1)
(2)

點評 考查了圖象的平移和對稱變換

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.給出以下四個命題,其中真命題的序號為①④.
①若命題p:“?x∈R,使得x2+x+1<0”,則?p:“?x∈R,均有x2+x+1≥0”;
②線性相關(guān)系數(shù)r越大,兩個變量的線性相關(guān)性越強;反之,線性相關(guān)性越弱;
③用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
④若x,y滿足x2+y2+xy=1,則x+y的最大值為$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標系xOy中,設(shè)向量$\overrightarrow{a}$=(cosθ,1),$\overrightarrow$=(sinθ,-1),其中θ∈[0,π].
(1)若θ=$\frac{π}{12}$,求數(shù)量積$\overrightarrow{a}$$•\overrightarrow$;
(2)若$\overrightarrow{a}$∥$\overrightarrow$,求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)已知定義在[-2,2]上的奇函數(shù),f(x)在區(qū)間[0,2]上單調(diào)遞減,若f(m)+f(m-1)>0,求實數(shù)m的取值范圍;
(2)已知定義在[-2,2]上的偶函數(shù),f(x)在區(qū)間[0,2]上單調(diào)遞減,若f(1-m)<f(m),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在等差數(shù)列{an}中,已知a5=10,S3=3,那么( 。
A.a1=2,d=3B.a1=2,d=-3C.a1=-2,d=-3D.a1=-2,d=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若實數(shù)x,y滿足不等式$\left\{\begin{array}{l}{x+y≤3}\\{2x+y≥4}\\{x-2y≤2}\end{array}\right.$,且z=$\frac{y}{x}$,則z的取值范圍是( 。
A.{z|0≤z≤$\frac{1}{8}$}B.{z|0≤z≤2}C.{z|z≤0或z≥$\frac{1}{8}$}D.{z|0z≤0或z≥2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.等差數(shù)列{an}滿足:a1=1,a2+a6=14;正項等比數(shù)列{bn}滿足:b1=2,b3=8.
(Ⅰ) 求數(shù)列{an},{bn}的通項公式an,bn;
(Ⅱ)求數(shù)列{an•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若集合A={0,1},B={x|x2+(1-a2)x-a2=0},則“A∩B={1}”是“a=1”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x|a-x|+2x.
(1)當a=4時,寫出函數(shù)f(x)的單調(diào)遞增區(qū)間(不需要過程);
(2)若函數(shù)f(x)在R上是增函數(shù),求實數(shù)a的取值范圍;
(3)若存在a∈[-2,4],使得函數(shù)y=f(x)-at有三個零點,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案