已知一幾何體的三視圖如下,其中正視圖,側(cè)視圖均為矩形,俯視圖為等腰直角三角形,則該幾何體的體積為
1
1
分析:由已知中的三視圖可又分析出該幾何體的形狀,進而分析出幾何體的棱長,代入棱柱體積公式,可得答案.
解答:解:由已知中的三視圖可得,
該幾何體是一個底面為直角邊長為1的等腰直角三角形
高為2的三棱柱
其底面積S=
1
2

故其體積V=
1
2
×2=1
故答案為:1
點評:本題考查的知識點是由三視圖求體積,其中根據(jù)已知中的三視圖分析出幾何體的形狀和棱長是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知一幾何體的三視圖如下,則這幾何體的外接球的表面積為
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知一幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、
19
3
3
π+40π
B、
13
3
3
π+40π
C、
19
3
3
π+40
D、
13
3
3
π+40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一幾何體的三視圖如圖,主視圖和左視圖都是矩形,俯視圖為正方形,在該幾何體上任意選擇4個頂點,以這4個點為頂點的幾何形體可能是( 。
①矩形;
②有三個面為直角三角形,有一個面為等腰三角形的四面體;
③每個面都是直角三角形的四面體.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一幾何體的三視圖如圖,主視圖與左視圖為全等的等腰直角三角形,直角邊長為6,俯視圖為正方形,(1)求點A到面SBC的距離;(2)有一個小正四棱柱內(nèi)接于這個幾何體,棱柱底面在面ABCD內(nèi),其余頂點在幾何體的棱上,當(dāng)棱柱的底面邊長與高取何值時,棱柱的體積最大,并求出這個最大值.

查看答案和解析>>

同步練習(xí)冊答案