10.若點P(2,-1)(直角坐標系下的坐標)為曲線ρ2-2ρcosθ-24=0(極坐標系下的方程)的弦的中點,則該弦所在直線的直角坐標方程為x-y-3=0.

分析 曲線ρ2-2ρcosθ-24=0,化為直角坐標方程:(x-1)2+y2=25.設經(jīng)過點P(2,-1)的弦的端點分別為A(x1,y1),B(x2,y2).代入圓的方程相減可得:(x1+x2-2)(x1-x2)+(y1+y2)(y1-y2)=0,再利用中點坐標公式、斜率計算公式即可得出.

解答 解:曲線ρ2-2ρcosθ-24=0,化為直角坐標方程:x2+y2-2x-24=0,(x-1)2+y2=25.
設經(jīng)過點P(2,-1)的弦的端點分別為A(x1,y1),B(x2,y2).
代入圓的方程可得:$({x}_{1}-1)^{2}$+${y}_{1}^{2}$=25,$({x}_{2}-1)^{2}$+${y}_{2}^{2}$=25,
相減可得:(x1+x2-2)(x1-x2)+(y1+y2)(y1-y2)=0,
把x1+x2=4,y1+y2=-2,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=k代入上式可得:(4-2)-2k=0,解得k=1.
∴該弦所在直線的直角坐標方程為:y+1=x-2,即x-y-3=0.
故答案為:x-y-3=0.

點評 本題考查了極坐標方程化為直角坐標方程、中點坐標公式、斜率計算公式、“點差法”,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=|x-a|.
(1)若不等式f(x)≤1的解集為{x|1≤x≤3},求實數(shù)a的值;
(2)若a=2,且存在實數(shù)x,使得m≥f(x)+f(x+5)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.將函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{2}$個單位長度,得到函數(shù)y=g(x)的圖象,則$\int_0^π{g(x)}dx$(  )
A.0B.πC.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知命題:p:?x∈(0,+∞),2lnx-x>ax成立;命題q:雙曲線x2+$\frac{y^2}{a}$=1的離心率e∈(1,2),若(?p)∨(?q)為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x)=cos2x是( 。
A.周期為π的偶函數(shù)B.周期為π的奇函數(shù)
C.周期為2π的偶函數(shù)D.周期為2π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=x2+bx+c滿足f(0)=0,且f(-1-x)=f(x),令g(x)=f(x)-|x-1|.
(1)求函數(shù)f(x)的表達式;
(2)求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知命題p:若θ是第二象限角,則sinθ(1-2cos2$\frac{θ}{2}$)>0,則( 。
A.命題p的否命題為:若θ是第二象限角,則sinθ(1-2 cos2$\frac{θ}{2}$)<0
B.命題p的否命題為:若θ不是第二象限角,則sinθ(1-2 cos2$\frac{θ}{2}$)>0
C.命題p是假命題
D.命題p的逆命題是假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=sin2x+acosx+5,a∈R.
(1)當a=1時,求函數(shù)f(x)的最大值和最小值以及相應的x的取值;
(2)求函數(shù)f(x)在R上的最大值g(a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=$\frac{\left|x\right|}{x+2}$-kx2(k∈R)有兩個零點,則k的取值范圍k<0或0<k<1.

查看答案和解析>>

同步練習冊答案