(本小題滿分12分)如圖所示的幾何體是由以等邊三角形為底面的棱柱被平面所截而得,已知平面,,,,為的中點(diǎn),面.
(Ⅰ)求的長(zhǎng);
(Ⅱ)求證:面面;
(Ⅲ)求平面與平面相交所成銳角二面角的余弦值.
(Ⅰ)取的中點(diǎn),連接
則為梯形的中位線,
又,所以
所以四點(diǎn)共面……………2分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/95/5/1nvzr3.gif" style="vertical-align:middle;" />面,且面面
所以
所以四邊形為平行四邊形,
所以……………4分
(Ⅱ)由題意可知平面面;
又且平面
所以面
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6b/9/1gvds2.gif" style="vertical-align:middle;" /> 所以面
又面,所以面面;……………6分
(Ⅲ)以為原點(diǎn),所在直線分別為軸建立空間直角坐標(biāo)系
……7分
設(shè)為的中點(diǎn),則
易證:平面
平面的法向量為……………8分
設(shè)平面的法向量為,
由得 所以……………10分
所以,……………11分
所以平面與平面相交所成銳角二面角的余弦值為. ……12分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)
如圖,在三棱錐中,底面, 點(diǎn),分別在棱上,且
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)為的中點(diǎn)時(shí),求與平面所成的角的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖:一個(gè)圓錐的底面半徑為2,高為6,在其中有一個(gè)半徑為x的內(nèi)接圓柱。
(1)試用x表示圓柱的體積;
(2).當(dāng)x為何值時(shí),圓柱的側(cè)面積最大,最大值是多少。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知高為3的棱柱ABC-A1B1C1的底面是邊長(zhǎng)為1的正三角形,求三棱錐B1-ABC的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱錐P-ABC中,已知PA^平面ABC, PA=3,PB=PC=BC="6," 求二面角P-BC-A的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
一個(gè)幾何體的三視圖如圖所示(單位長(zhǎng)度為:cm):
主視圖 側(cè)視圖 俯視圖
(1)求該幾何體的體積; (2)求該幾何題的表面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)三角形ABC中,AB=6,BC=8,CA=10,繞AB邊旋轉(zhuǎn)一周形成一個(gè)幾何體,(1)求出這個(gè)幾何體的表面積;(2)求出這個(gè)幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn),作交PB于點(diǎn)F.
(I) 證明:PA∥平面EDB;
(II) 證明:PB⊥平面EFD;
(III) 求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com