【題目】某市電視臺為了宣傳舉辦問答活動,隨機對該市15~65歲的人群抽樣了人,回答問題計結果如下圖表所示:

1)分別求出的值;

(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組各抽取多少人?

(3)在(2)的前提下,電視臺決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求所抽取的人中第2組至少有1人獲得幸運獎的概率.

【答案】(1)18,9,0.9,0.2(2)2,3,1(3)

【解析】試題分析:(1)先由第一組求出的值,再結合圖表及頻率分布直方圖就可以求出的值;(2)根據(jù)(1)中求出的各組人數(shù),按照分層抽樣的方法就可求出各組應抽取的人數(shù);(3)先列出從人中隨機抽取人的總抽取方法,再列出所抽取的人中第二組至少有人的抽取方法數(shù),即可求出所得的概率.

試題解析:(1)由頻率表中第一組數(shù)據(jù)可知,第一組總?cè)藬?shù)為,

再結合頻率分布直方圖可知

,

,

,

2)第二,三,四組中回答正確的共有人,所以利用分層抽樣在人中抽取人,每組分別抽取的人數(shù)為:

第二組: 人,

第三組: 人,

第四組: .

3)設第二組的人為,第三組的人為,第四組的人為,則從人中抽人所有可能的結果有:

個基本

事件,其中第二組至少有一人被抽中的有

個基本事件.所以第二組至少有一人獲得幸運獎的概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某市醫(yī)療保險實行定點醫(yī)療制度,按照“就近就醫(yī)、方便管理” 的原則,規(guī)定參加保險人員可自主選擇四家醫(yī)療保險定點醫(yī)院和一家社區(qū)醫(yī)院作為就診的醫(yī)療機構.若甲、乙、丙、丁4名參加保險人員所在地區(qū)附近有三家社區(qū)醫(yī)院,并且他們的選擇是等可能的、相互獨立的.

(1)求甲、乙兩人都選擇社區(qū)醫(yī)院的概率;

(2)求甲、乙兩人不選擇同一家社區(qū)醫(yī)院的概率;

(3)設在4名參加保險人員中選擇社區(qū)醫(yī)院的人數(shù)為,求的分布列和數(shù)學期望及方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1x+2y+1=0,l2-2x+y+2=0,它們相交于點A.

(1)判斷直線l1l2是否垂直?請給出理由.

(2)求過點A且與直線l33x+y+4=0平行的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=pe﹣x+x+1(p∈R). (Ⅰ)當實數(shù)p=e時,求曲線y=f(x)在點x=1處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當p=1時,若直線y=mx+1與曲線y=f(x)沒有公共點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,上頂點為, 是斜邊長為的等腰直角三角形,若直線與橢圓交于不同兩點.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)當時,求線段的長度;

)是否存在,使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在直角梯形中,,,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,的中點,如圖2.

(1)求證:平面;

(2)求證:平面;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如下圖,在三棱錐, , , 的中點.

(1)求證: ;

2)設平面平面, , 求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)恒成立,求實數(shù)的取值范圍;

(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,下表是該地一建設銀行連續(xù)五年的儲蓄存款(年底余額),如下表1

年份x

2011

2012

2013

2014

2015

儲蓄存款y(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理, 得到下表2

時間代號t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z關于t的線性回歸方程;

(Ⅱ)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?

(附:對于線性回歸方程,其中

查看答案和解析>>

同步練習冊答案