14.C271+C272+…+C2727除以9的余數(shù)( 。
A.2B.3C.7D.8

分析 所給的式子即(9-1)9-1,利用二項式定理展開,可得它除以9的余數(shù).

解答 解:∵C271+C272+…+C2727=${C}_{27}^{0}$+C271+C272+…+C2727 -1
=227-1=89-1=(9-1)9-1=${C}_{9}^{0}$•99-${C}_{9}^{1}$•98+${C}_{9}^{2}$•97+…+${C}_{9}^{8}$•9-${C}_{9}^{9}$-1,
∴除了最后兩項外,其余的各項都能被9整除,故該式除以9的余數(shù)即最后兩項除以9的余數(shù),
為7,
故選:C.

點評 本題主要考查二項式定理的應用,二項展開式的通項公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.復數(shù)z=$\frac{-3+i}{2+i}$的共軛復數(shù)為$\overline{z}$,則$\overline{z}$的虛部為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.拋擲兩顆質(zhì)地均勻的骰子,則點數(shù)之和為6的概率等于(  )
A.$\frac{1}{6}$B.$\frac{5}{36}$C.$\frac{1}{9}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知正四棱錐P-ABCD如圖.
(Ⅰ)若其正視圖是一個邊長分別為$\sqrt{3}$、$\sqrt{3}$,2的等腰三角形,求其表面積S、體積V;
(Ⅱ)設AB中點為M,PC中點為N,證明:MN∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.集合M滿足:{x|1≤x≤3,x∈N}?M?{y|0≤y2<16,y∈N*},滿足條件的集合M的個數(shù)為(  )
A.7B.1C.2D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.數(shù)列$\frac{1}{1×2},-\frac{1}{2×3},\frac{1}{3×4},-\frac{1}{4×5},…$的通項公式an=(-1)n+1•$\frac{1}{n(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知橢圓方程為$\frac{x^2}{16}$+$\frac{y^2}{9}$=1,橢圓上的點M到該橢圓的一個焦點F1的距離為2,N為MF1的中點,O是橢圓的中心,那么線段ON的長度為(  )
A.2B.3C.4D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)的定義域為{x|x∈R且x≠0},對于定義域內(nèi)的任意x1,x2,都有f(x1x2)=f(x1)+f(x2),且當x>1時,f(x)>0.
(1)求證:f(x)是偶函數(shù);
(2)求證:f(x)在(0,+∞)上是增函數(shù);
(3)如果f(ax+1)≤f(x-2)在x∈[$\frac{1}{2}$,1]上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.一個多面體的直觀圖和三視圖如圖,M是A1B的中點,N是棱B1C1上的任意一點(含頂點).

①當點N是棱B1C1的中點時,MN∥平面ACC1A1
②MN⊥A1C;
③三棱錐N-A1BC的體積為VN-A${\;}_{{\;}_{1}}$BC=$\frac{1}{6}$a3;
④點M是該多面體外接球的球心.
其中正確的是①②③④.

查看答案和解析>>

同步練習冊答案