設(shè)是定義在上的函數(shù),當(dāng),且時(shí),有.
(1)證明是奇函數(shù);
(2)當(dāng)時(shí),(a為實(shí)數(shù)). 則當(dāng)時(shí),求的解析式;
(3)在(2)的條件下,當(dāng)時(shí),試判斷在上的單調(diào)性,并證明你的結(jié)論.
(1)函數(shù)定義域?qū)ΨQ
即,函數(shù)是奇函數(shù)
(2)(3)在上是增函數(shù)
解析試題分析:(1)函數(shù)定義域?qū)ΨQ
即,函數(shù)是奇函數(shù)
(2)時(shí)
(3)時(shí)恒成立,在上是增函數(shù),時(shí),令得,在上是增函數(shù),綜上當(dāng)時(shí)在上是增函數(shù)
考點(diǎn):求函數(shù)解析式及函數(shù)性質(zhì)
點(diǎn)評(píng):判斷函數(shù)奇偶性需在定義域?qū)ΨQ的條件下判斷,哪一個(gè)成立,判斷函數(shù)單調(diào)性,只需判定導(dǎo)數(shù)大于零還是小于零
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)命題p:函數(shù)的定義域?yàn)镽;命題q:不等式對(duì)任意恒成立.
(Ⅰ)如果p是真命題,求實(shí)數(shù)的取值范圍;
(Ⅱ)如果命題“p或q”為真命題且“p且q”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在實(shí)數(shù)集上的函數(shù),,其導(dǎo)函數(shù)記為,
(1)設(shè)函數(shù),求的極大值與極小值;
(2)試求關(guān)于的方程在區(qū)間上的實(shí)數(shù)根的個(gè)數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知指數(shù)函數(shù)滿足:g(2)=4,定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/92/a/jelki1.png" style="vertical-align:middle;" />的函數(shù)
是奇函數(shù)。
(1)確定的解析式;(2)求m,n的值;
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為常數(shù),是自然對(duì)數(shù)的底數(shù))是實(shí)數(shù)集上的奇函數(shù).
(1)求的值;
(2)試討論函數(shù)的零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)在如圖給定的直角坐標(biāo)系內(nèi)畫出的圖象;
(2)寫出的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
⑴寫出該函數(shù)的單調(diào)區(qū)間;
⑵若函數(shù)恰有3個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍;
⑶若對(duì)所有的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com