設(shè)命題p:函數(shù)的定義域為R;命題q:不等式對任意恒成立.
(Ⅰ)如果p是真命題,求實數(shù)的取值范圍;
(Ⅱ)如果命題“p或q”為真命題且“p且q”為假命題,求實數(shù)的取值范圍.

(Ⅰ)實數(shù)的取值范圍是.(Ⅱ)實數(shù)的取值范圍是

解析試題分析:(Ⅰ)由題意: 對任意恒成立,
當(dāng)時,不符題意,舍去,
當(dāng)時,,
所以實數(shù)的取值范圍是
(Ⅱ)設(shè),
,當(dāng)為真命題時,有
∵命題“p或q”為真命題且“p且q”為假命題,∴一個為真,一個為假,
當(dāng)假,則,無解,
當(dāng)真,則,
綜上,實數(shù)的取值范圍是
考點:本題主要考查復(fù)合命題的真假判斷,指數(shù)函數(shù)的性質(zhì),對數(shù)函數(shù)的性質(zhì),二次函數(shù)、二次方程問題。
點評:中檔題,涉及復(fù)合命題,綜合性較強。注意對于“p或q”p,q有一個真命題,其即為真命題,“p且q”中,p,q有一假命題,其即為假命題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),且
(1)求;
(2)判斷的奇偶性;
(3)判斷上的單調(diào)性,并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)若函數(shù)存在極值點,求實數(shù)b的取值范圍;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時,令(),()為曲線y=上的兩動點,O為坐標(biāo)原點,能否使得是以O(shè)為直角頂點的直角三角形,且斜邊中點在y軸上?請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) 
(I)當(dāng)時,求在[1,]上的取值范圍。
(II)若在[1,]上為增函數(shù),求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時,證明:上為減函數(shù);
(2)若有兩個極值點求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,函數(shù)
(Ⅰ)若的值;
(Ⅱ)求函數(shù)的最大值和單調(diào)遞增區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),其中為正實數(shù).
(1)當(dāng)時,求的極值點;
(2)若上的單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,其中,設(shè)
(1)求的定義域;
(2)判斷的奇偶性,并說明理由;
(3)若,求使成立的的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是定義在上的函數(shù),當(dāng),且時,有
(1)證明是奇函數(shù);
(2)當(dāng)時,(a為實數(shù)). 則當(dāng)時,求的解析式;
(3)在(2)的條件下,當(dāng)時,試判斷上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案