精英家教網 > 高中數學 > 題目詳情
已知橢圓 經過點,且其右焦點與拋物線的焦點重合,過點且與坐標軸不垂直的直線與橢圓交于兩點.
(1)求橢圓的方程;
(2)設O為坐標原點,線段上是否存在點,使得
若存在,求出的取值范圍;若不存在,說明理由;
(3)過點且不垂直于軸的直線與橢圓交于兩點,點關于軸的對稱點為,
試證明:直線過定點.
(1)
(2)存在,
(3)詳見解析
解:(1)由題意,得: 
所以 , 解,得 ,所以橢圓的方程為: ;
(2)設直線 的方程為: ,代入,得:
 
 恒成立.
線段的中點為 ,
 ,
 得: ,
所以直線 為直線 的垂直平分線,
直線的方程為: ,
 得:點的橫坐標,
因為, 所以,所以.
所以線段 上存在點 使得,其中.
證明:設直線 的方程為:,代入,得:
,
,得: ,
 ,則
 ,
則直線的方程為 ,
 得: 
 ,
所以直線 過定點 .
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的左右焦點分別為,短軸兩個端點為,且四邊形是邊長為2的正方形.
(1)求橢圓的方程;
(2)若分別是橢圓長軸的左右端點,動點滿足,連接,交橢圓于點.證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點,若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知點P(3,2)與點Q(1,4)關于直線l對稱,則直線l的方程為(  )
A.x-y=0 B.x-y+1=0
C.x+y+1=0 D.x+y=0

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

[2013·撫順模擬]若直線x-2y+5=0與直線2x+my-6=0互相垂直,則實數m=________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

求經過兩直線的交點且與直線垂直的直線方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知,是雙曲線的左,右焦點,若雙曲線左支上存在一點與點關于直線對稱,則該雙曲線的離心率為 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知曲線C上的動點滿足到定點的距離與到定點距離之比為
(1)求曲線的方程;
(2)過點的直線與曲線交于兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若動點分別在直線l1:x+y-7=0和l2:x+y-5=0上移動,則AB中點M到原點距離的最小值為(  ).
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知△ABC的頂點為A(3,-1),AB邊上的中線所在的直線方程為6x+10y-59=0,∠B的平分線所在的直線方程為x-4y+10=0,求BC邊所在的直線方程.

查看答案和解析>>

同步練習冊答案