分析:(1)此函數(shù)由y=t
2+t-2與t=
()x兩個(gè)函數(shù)復(fù)合而成,判斷出內(nèi)層函數(shù)的單調(diào)性以及內(nèi)層函數(shù)的值域與外層函數(shù)的單調(diào)區(qū)間的關(guān)系,再由復(fù)合函數(shù)單調(diào)性的判斷規(guī)則同增異減得出復(fù)合函數(shù)的單調(diào)性;
(2)由(1)內(nèi)層函數(shù)的值域是(0,+∞),解出外層函數(shù)y=t
2+t-2在(0,+∞)上的值域,求得函數(shù)的值域;
(3)由f(x)=0得t
2+t-2=0,解出t=1,令
()x=1解出x的值即可得到方程的根;
(4)由f(x)>0得t
2+t-2>0解得t>1或t<-2(舍),令
()x>1,解得x的取值范圍,即為原不等式的解集
解答:解:(1)此函數(shù)由y=t
2+t-2與t=
()x兩個(gè)函數(shù)復(fù)合而成,由于t=
()x是一個(gè)減函數(shù),且其值域?yàn)椋?,+∞),函數(shù)
y=t
2+t-2在(-
,+∞)是增函數(shù),此復(fù)合函數(shù)外增內(nèi)減,故是單調(diào)遞減函數(shù);
(2)由(1)內(nèi)層函數(shù)的值域是(0,+∞),外層函數(shù)在(0,+∞)上是增函數(shù),故函數(shù)的值域?yàn)椋?2,+∞);
(3)由f(x)=0得t
2+t-2=0,解得t=-2(舍)或t=1,令
()x=1解得x=0;
(4)由f(x)>0得t
2+t-2>0解得t>1或t<-2(舍),令
()x>1,解得x<0,即不等式的解集是(-∞,0).
點(diǎn)評(píng):本題考查復(fù)合函數(shù)的單調(diào)性,解此類題關(guān)鍵是分清內(nèi)外層函數(shù)及它們的性質(zhì),本題將復(fù)合函數(shù)性質(zhì)研究問(wèn)題一分為二研究單調(diào)性,這是復(fù)合函數(shù)單調(diào)性研究常用的方法,在求解復(fù)合函數(shù)的值域時(shí)采取的順序是先內(nèi)而外,解此類方程或解此類不等式時(shí)由外而內(nèi),題后注意體會(huì)總結(jié)復(fù)合函數(shù)中這幾個(gè)題型的解題的方法規(guī)律.