【題目】已知函數(shù),的導(dǎo)數(shù),函數(shù)處取得最小值.

1)求證:;

2)若時(shí),恒成立,求的取值范圍.

【答案】1)見解析; 2.

【解析】

1)對求導(dǎo),令,求導(dǎo)研究單調(diào)性,分析可得存在使得,即,即得證;

2)分兩種情況討論,當(dāng)時(shí),轉(zhuǎn)化利用均值不等式即得證;當(dāng)有兩個(gè)不同的零點(diǎn),,分析可得的最小值為,分,討論即得解.

1)由題意,

,則,知的增函數(shù),

因?yàn)?/span>,

所以,存在使得,即

所以,當(dāng)時(shí)為減函數(shù),

當(dāng)時(shí),為增函數(shù),

故當(dāng)時(shí),取得最小值,也就是取得最小值.

,于是有,即,

所以有,證畢.

2)由(1)知,的最小值為,

當(dāng),即時(shí),的增函數(shù),

所以,

由(1)中,得,即

滿足題意.

當(dāng),即時(shí),有兩個(gè)不同的零點(diǎn),

,即,

時(shí),為減函數(shù),(*

時(shí),為增函數(shù),

所以的最小值為

注意到時(shí),,且此時(shí),

)當(dāng)時(shí),,

所以,即,

,

,所以,即

由于在下,恒有,所以

)當(dāng)時(shí),,

所以,

所以由(*)知時(shí),為減函數(shù),

所以,不滿足時(shí),恒成立,故舍去.

滿足條件.

綜上所述:的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有12,13,23.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:我與丙的卡片上相同的數(shù)字不是1”,丙說:我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓()的離心率為,圓軸正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,、為橢圓的左、右焦點(diǎn),為橢圓上一點(diǎn),且.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線,過點(diǎn)的直線交橢圓于、兩點(diǎn),線段的垂直平分線分別交直線、直線、兩點(diǎn),當(dāng)最小時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著科學(xué)技術(shù)的飛速發(fā)展,網(wǎng)絡(luò)也已經(jīng)逐漸融入了人們的日常生活,網(wǎng)購作為一種新的消費(fèi)方式,因其具有快捷、商品種類齊全、性價(jià)比高等優(yōu)勢而深受廣大消費(fèi)者認(rèn)可.某網(wǎng)購公司統(tǒng)計(jì)了近五年在本公司網(wǎng)購的人數(shù),得到如下的相關(guān)數(shù)據(jù)(其中x=1”表示2015年,x=2”表示2016年,依次類推;y表示人數(shù))

x

1

2

3

4

5

y(萬人)

20

50

100

150

180

1)試根據(jù)表中的數(shù)據(jù),求出y關(guān)于x的線性回歸方程,并預(yù)測到哪一年該公司的網(wǎng)購人數(shù)能超過300萬人;

2)該公司為了吸引網(wǎng)購者,特別推出玩網(wǎng)絡(luò)游戲,送免費(fèi)購物券活動(dòng),網(wǎng)購者可根據(jù)拋擲骰子的結(jié)果,操控微型遙控車在方格圖上行進(jìn). 若遙控車最終停在勝利大本營,則網(wǎng)購者可獲得免費(fèi)購物券500元;若遙控車最終停在失敗大本營,則網(wǎng)購者可獲得免費(fèi)購物券200. 已知骰子出現(xiàn)奇數(shù)與偶數(shù)的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、、第20格。遙控車開始在第0格,網(wǎng)購者每拋擲一次骰子,遙控車向前移動(dòng)一次.若擲出奇數(shù),遙控車向前移動(dòng)一格(從)若擲出偶數(shù)遙控車向前移動(dòng)兩格(從),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時(shí),游戲結(jié)束。設(shè)遙控車移到第格的概率為,試證明是等比數(shù)列,并求網(wǎng)購者參與游戲一次獲得免費(fèi)購物券金額的期望值.

附:在線性回歸方程中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年3月21日是世界睡眠日,良好的睡眠狀況是保持身體健康的重要基礎(chǔ).為了做好今年的世界睡眠日宣傳工作,某社區(qū)從本轄區(qū)內(nèi)同一年齡層次的人員中抽取了100人,通過問詢的方式得到他們在一周內(nèi)的睡眠時(shí)間(單位:小時(shí)),并繪制出如右的頻率分布直方圖:

(Ⅰ)求這100人睡眠時(shí)間的平均數(shù)(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,結(jié)果精確到個(gè)位);

(Ⅱ)由直方圖可以認(rèn)為,人的睡眠時(shí)間近似服從正態(tài)分布,其中近似地等于樣本平均數(shù),近似地等于樣本方差.假設(shè)該轄區(qū)內(nèi)這一年齡層次共有10000人,試估計(jì)該人群中一周睡眠時(shí)間位于區(qū)間(39.2,50.8)的人數(shù).

附:.若隨機(jī)變量服從正態(tài)分布,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下面左圖,在直角梯形中,,,,,,點(diǎn)上,且,將沿折起,得到四棱錐(如下面右圖).

1)求四棱錐的體積的最大值;

2)在線段上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的通項(xiàng)公式為,數(shù)列的通項(xiàng)公式為.設(shè),若數(shù)列的最大項(xiàng)為,則實(shí)數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鳳鳴山中學(xué)的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是(

A.具有正線性相關(guān)關(guān)系

B.回歸直線過樣本的中心點(diǎn)

C.若該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg

D.若該中學(xué)某高中女生身高為160cm,則可斷定其體重必為50.29kg.

查看答案和解析>>

同步練習(xí)冊答案