9.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,其中a1+a5=0,a11=16.
(I)在各項(xiàng)均為正的等比數(shù)列{bn}中,b1=2且b${\;}_{{a}_{5}}$=4b${\;}_{{a}_{4}}$,求bn;
(Ⅱ)若cn=$\frac{1}{{S}_{n}+6n}$,求c1+c2+c3+…+c20的值.

分析 (Ⅰ)由等差數(shù)列的通項(xiàng)公式求出公差和首項(xiàng),從得到在各項(xiàng)均為正的等比數(shù)列{bn}中$\left\{\begin{array}{l}{_{1}=2}\\{_{4}=4_{2}}\end{array}\right.$,由此能求出等比數(shù)列{bn}的通項(xiàng)公式.
(Ⅱ)先求出cn=$\frac{1}{{S}_{n}+6n}$=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}-\frac{1}{n+1}$,由此利用裂項(xiàng)求和法能求出c1+c2+c3+…+c20

解答 解:(Ⅰ)∵等差數(shù)列{an}的前n項(xiàng)和為Sn,其中a1+a5=0,a11=16,
∴$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}+4d=0}\\{{a}_{1}+10d=16}\end{array}\right.$,解得a1=-4,d=2,
∴a5=-4+4×2=4,a4=-4+3×2=2,
∵在各項(xiàng)均為正的等比數(shù)列{bn}中,b1=2且b${\;}_{{a}_{5}}$=4b${\;}_{{a}_{4}}$,
∴$\left\{\begin{array}{l}{_{1}=2}\\{_{4}=4_{2}}\end{array}\right.$,∴2q3=4×2q,
∵各項(xiàng)均為正,∴q>0,由此解得q=2,
∴$_{n}={2}^{n}$.
(Ⅱ)∵a1=-4,d=2,∴${S}_{n}=-4n+\frac{n(n-1)}{2}×2$=n2-5n,
∴cn=$\frac{1}{{S}_{n}+6n}$=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴c1+c2+c3+…+c20
=1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{20}-\frac{1}{21}$
=1-$\frac{1}{21}$
=$\frac{20}{21}$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,考查前20項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列和等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.生產(chǎn)A,B兩種元件,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于82為正品,小于82為次品.現(xiàn)隨機(jī)抽取這兩種元件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:
測(cè)試指標(biāo)[70,76)[76,82)[82,88)[88,94)[94,100]
元件A81240328
元件B71840296
(Ⅰ)試分別估計(jì)元件A,元件B為正品的概率;
(Ⅱ)生產(chǎn)一件元件A,若是正品可盈利50元,若是次品則虧損10元;生產(chǎn)一件元件B,若是正品可盈利100元,若是次品則虧損20元.
(ⅰ)記X為生產(chǎn)1件元件A和1件元件B所得的總利潤(rùn),求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(ⅱ)求生產(chǎn)5件元件B所獲得的利潤(rùn)不少于300元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)y=loga(mx2-4x+2)(a>0且a≠1)的值域是R,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)的定義域是(-1,1),對(duì)任意的a,b∈(-1,1)都有f(a)+f(b)=f($\frac{a+b}{1+ab}$),且當(dāng)x>0時(shí),f(x)<0.
(1)求f(0)的值,并判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)在(-1,1)上的單調(diào)性,并證明你的結(jié)論;
(3)若f($\frac{1}{2}$)=-1,當(dāng)x∈[-$\frac{4}{5}$,$\frac{4}{5}$]時(shí),f(x)≤m2-2am+2對(duì)所有的a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\sqrt{3}$cosx-sinx=-$\frac{6}{5}$,則sin($\frac{π}{3}$-x)=( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=|x+1|-|2-x|的最大值是3,最小值是-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知在平面ABC中,AC⊥BC.AC=BC,點(diǎn)D滿足$\overrightarrow{CD}$=t$\overrightarrow{CA}$+(1-t)$\overrightarrow{CB}$,若∠ACD=60°,則t的值為(  )
A.$\frac{-1+\sqrt{3}}{2}$B.$\sqrt{3}$-$\sqrt{2}$C.$\sqrt{2}$-1D.$\frac{-1±\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知tanα,tanβ是方程6x2-5x+1=0兩個(gè)根且0<α<$\frac{π}{2}$,π<β<$\frac{3π}{2}$,則α+β的值為( 。
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{5π}{4}$D.$\frac{7π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f($\frac{x+1}{x}$)=$\frac{2x+1}{{x}^{2}}$,則(  )
A.f(x)=x2+1(x≠0)B.f(x)=x2+1(x≠1)C.f(x)=x2-1(x≠1)D.f(x)=x2-1(x≠0)

查看答案和解析>>

同步練習(xí)冊(cè)答案