14.函數(shù)y=|x+1|-|2-x|的最大值是3,最小值是-3.

分析 化簡(jiǎn)y=|x+1|-|2-x|=$\left\{\begin{array}{l}{-3,x≤-1}\\{2x-1,-1<x<2}\\{3,x≥2}\end{array}\right.$,從而由分段函數(shù)求最值.

解答 解:y=|x+1|-|2-x|
=$\left\{\begin{array}{l}{-3,x≤-1}\\{2x-1,-1<x<2}\\{3,x≥2}\end{array}\right.$,
故函數(shù)的最大值為3,
最小值為-3;
故答案為:3,-3.

點(diǎn)評(píng) 本題考查了絕對(duì)值函數(shù)與分段函數(shù)的應(yīng)用,同時(shí)考查了分類討論的思想應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x),g(x)都是定義在R上的函數(shù),并滿足:f(x)=ax•g(x)(a>0,且a≠1)和f′(x)•g(x)>f(x)•g′(x)(g(x)≠0),且$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,當(dāng)數(shù)列{$\frac{f(n)}{g(n)}$}的前n項(xiàng)和大于62時(shí),n的最小值是( 。
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點(diǎn)P(x,y)在圓x2+y2-4x-2y+4=0上,則$\frac{y}{x}$的最大值和最小值分別是$\frac{4}{3}$,0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.cosα=a,sinβ=b,α∈(0,$\frac{π}{2}$),β∈(0,π),則cos(α+β)的值的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,其中a1+a5=0,a11=16.
(I)在各項(xiàng)均為正的等比數(shù)列{bn}中,b1=2且b${\;}_{{a}_{5}}$=4b${\;}_{{a}_{4}}$,求bn;
(Ⅱ)若cn=$\frac{1}{{S}_{n}+6n}$,求c1+c2+c3+…+c20的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知P:0<x<2,Q:x(x-3)<0,¬P是¬Q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知A(-1,0),B(3,0),圓C以AB為直徑.
(1)求圓C的方程;
(2)求直線l:3x+4y-8=0被圓C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知過點(diǎn)A(0,1)的直線l,斜率為k,與圓C:(x-2)2+(y-3)2=1相交于M、N兩個(gè)不同點(diǎn).
(Ⅰ)求實(shí)數(shù)k取值范圍;
(Ⅱ)若$\overrightarrow{OM}•\overrightarrow{ON}=12$,其中O為坐標(biāo)原點(diǎn),求|MN|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{x≤3}\\{x-y+1≥0}\\{2x+y-1≥0}\end{array}}\right.$目標(biāo)函數(shù)z=x+ay取最大值時(shí)有無窮多個(gè)最優(yōu)解,則a=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案