【題目】不等式|2x+3|<1的解集為(
A.(﹣2,﹣1)
B.(﹣∞,﹣2)∪(﹣1,+∞)
C.(1,2)
D.(﹣∞,1)∪(2,+∞)

【答案】A
【解析】解:由不等式|2x+3|<1可得﹣1<2x+3<1,解得﹣2<x<﹣1,故解集為{x|﹣2<x<﹣1},故選:A.
【考點精析】通過靈活運(yùn)用絕對值不等式的解法,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知R為實數(shù)集,集合A={x|x2﹣2x≥0},B={x|x>1},則(RA)∩B(
A.(0,1)
B.(0,1]
C.(1,2)
D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知R為實數(shù)集,M={x|x2﹣2x<0},N={x|x≥1},則M∩(RN)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】①若p∧q為假命題,則p,q均為假命題,
②x,y∈R,“若xy=0,則x2+y2=0的否命題是真命題”;
③直線和拋物線只有一個公共點是直線和拋物線相切的充要條件;
則其中正確的個數(shù)是( 。
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若拋物線y2=4x上的點M到焦點的距離為10,則M到y(tǒng)軸的距離是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}中,a4=2,a5=5,則數(shù)列{lgan}的前8項和等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面α∥平面β,直線mα,直線nβ,點A∈m,點B∈n,記點A、B之間的距離為a,點A到直線n的距離為b,直線m和n的距離為c,則(
A.b≤a≤c
B.a≤c≤b
C.c≤a≤b
D.c≤b≤a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是(
A.已知兩個平面α,β,若兩條異面直線m,n滿足mα,nβ且m∥β,n∥α,則α∥β
B.已知a∈R,則“a<1”是“|x﹣2|+|x|>a”恒成立的必要不充分條件
C.設(shè)p,q是兩個命題,若¬(p∧q)是假命題,則p,q均為真命題
D.命題p:“x∈R,使得x2+x+1<0”,則¬p:“x∈R,均有x2+x+1≥0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題的說法錯誤的是(
A.若復(fù)合命題p∧q為假命題,則p,q都是假命題
B.“x=1”是“x2﹣3x+2=0”的充分不必要條件
C.對于命題p:x∈R,x2+x+1>0 則¬p:x∈R,x2+x+1≤0
D.命題“若x2﹣3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2﹣3x+2≠0”

查看答案和解析>>

同步練習(xí)冊答案