解關(guān)于實(shí)數(shù)x的不等式數(shù)學(xué)公式,a∈R.

解:(1)當(dāng)a=1時(shí),原不等式等價(jià)于x-1<0,即x<1,故原不等式的解集為{x|x<1}
(2)當(dāng)a>1時(shí),原不等式等價(jià)于,故原不等式的解集為
(3)當(dāng)0<a<1時(shí),原不等式等價(jià)于或x<1,故原不等式的解集為{x|或x<1}
(4)當(dāng)a=0時(shí),原不等式等價(jià)于(x-1)2>0,即x≠1,故原不等式的解集為{x|x∈R,x≠1}
(5)當(dāng)a<0時(shí),原不等式等價(jià)于,即x>1或,故原不等式的解集為{x|x>1或
分析:先通分為:,因?yàn)榉匠?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/68113.png' />的兩根x=1與x=,大小沒法比較,所以要分類討論,①a>1;②0<a<1,③a=1,④a=0,⑤a<0,從而求出不等式的解.
點(diǎn)評(píng):此題主要考查一元二次不等式的解法,運(yùn)用了分類討論的思想,分類討論的問題比較多,從而加大了試題的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于實(shí)數(shù)x的不等式
axx-1
<1
,a∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
m
x
,且此函數(shù)圖象過點(diǎn)(1,5).
(1)求實(shí)數(shù)m的值并判斷f(x)的奇偶性;
(2)判斷函數(shù)f(x)在(0,2)上的單調(diào)性,并用定義證明你的結(jié)論.
(3)解關(guān)于實(shí)數(shù)x的不等式f(
2-2x
)<5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
m
x
,且此函數(shù)圖象過點(diǎn)(1,5)
(1)求實(shí)數(shù)m的值并判斷f(x)的奇偶性;
(2)若函數(shù)f(x)在(0,2)上單調(diào)遞減,解關(guān)于實(shí)數(shù)x的不等式f(
2-2x
)<5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)(x∈R)的最小正周期為2,且對(duì)任意實(shí)數(shù)x,f(2-x)=f(2+x),且[a,b](a<b)是f(x)的一個(gè)單調(diào)區(qū)間.
(1)求證:b-a≤1;
(2)已知區(qū)間[0,1]為f(x)的一個(gè)單調(diào)區(qū)間,且對(duì)任意x<0,都有f(2x)>f(2),解關(guān)于實(shí)數(shù)x的不等式f(-10.5)>f(x2+6x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市重點(diǎn)中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),且此函數(shù)圖象過點(diǎn)(1,5).
(1)求實(shí)數(shù)m的值并判斷f(x)的奇偶性;
(2)判斷函數(shù)f(x)在(0,2)上的單調(diào)性,并用定義證明你的結(jié)論.
(3)解關(guān)于實(shí)數(shù)x的不等式

查看答案和解析>>

同步練習(xí)冊(cè)答案