8.求橢圓$\frac{x^2}{16}+\frac{y^2}{4}=1$上的點(diǎn)到直線x-2y+4$\sqrt{2}$=0的最大距離.

分析 設(shè)出與x-2y+4$\sqrt{2}$=0平行且與橢圓$\frac{x^2}{16}+\frac{y^2}{4}=1$相切的直線方程為x-2y+m=0,聯(lián)立直線方程和橢圓方程,由判別式等于0求得m值,把橢圓$\frac{x^2}{16}+\frac{y^2}{4}=1$上的點(diǎn)到直線x-2y+4$\sqrt{2}$=0的最大距離轉(zhuǎn)化為橢圓的兩條相切的平行線間的距離得答案.

解答 解:設(shè)與x-2y+4$\sqrt{2}$=0平行且與橢圓$\frac{x^2}{16}+\frac{y^2}{4}=1$相切的直線方程為x-2y+m=0,
聯(lián)立$\left\{\begin{array}{l}{x-2y+m=0}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,得2x2+2mx+m2-16=0.
△=4m2-8(m2-16)=128-4m2=0,解得:m=$±4\sqrt{2}$.
∴直線x-2y+4$\sqrt{2}$=0與橢圓$\frac{x^2}{16}+\frac{y^2}{4}=1$相切,
則橢圓$\frac{x^2}{16}+\frac{y^2}{4}=1$上的點(diǎn)到直線x-2y+4$\sqrt{2}$=0的最大距離為d=$\frac{|4\sqrt{2}-(-4\sqrt{2})|}{\sqrt{5}}=\frac{8\sqrt{10}}{5}$.

點(diǎn)評 本題考查橢圓的簡單性質(zhì),考查了直線和圓錐曲線的關(guān)系,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,在區(qū)間(0,1)上為增函數(shù)的是( 。
A.y=sin2xB.$y={x^{\frac{3}{2}}}$C.$y={({\frac{1}{3}})^x}$D.y=|log2x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為了得到函數(shù)$y=\sqrt{2}cos3x$的圖象,可以將函數(shù)y=$\sqrt{2}$cos$\frac{3}{2}$x的圖象所有點(diǎn)的( 。
A.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)得到
B.橫坐標(biāo)縮短到原來的$\frac{1}{2}$(縱坐標(biāo)不變)得到
C.縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到
D.縱坐標(biāo)縮短到原來的$\frac{1}{2}$(橫坐標(biāo)不變)得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的首項a1=$\frac{1}{4}$的等比數(shù)列,其前n項和Sn中S3=$\frac{3}{16}$,
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log${\;}_{\frac{1}{2}}$|an|,Tn=$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若非零向量$\vec a$與向量$\vec b$的夾角為鈍角,$|{\vec b}|=2$,且當(dāng)$t=-\frac{1}{2}$時,$|{\vec b-t\vec a}|$(t∈R)取最小值$\sqrt{3}$.向量$\vec c$滿足$({\vec c-\vec b})⊥({\vec c-\vec a})$,則當(dāng)$\vec c•({\vec a+\vec b})$取最大值時,$|{\vec c-\vec b}|$等于( 。
A.$\sqrt{6}$B.$2\sqrt{3}$C.$2\sqrt{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知定義在(-∞,+∞)上的函數(shù)f(x)是奇函數(shù),且f(2-x)=f(x),則f(2010)值為(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.正三棱柱ABC-A1B1C1的各棱長都為2,E,F(xiàn)分別為AB、A1C1的中點(diǎn),則EF的長是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.不等式(2-|x|)(2+x)>0的解集為(-∞,-2)∪(-2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知全集U=R,A={x|x2-7x+10≤0},B={x|x-x2+6<0},求:
(1)A∩B   
(2)∁R(A∪B)    
(3)(∁RA)∪B.

查看答案和解析>>

同步練習(xí)冊答案