分析 設(shè)出與x-2y+4$\sqrt{2}$=0平行且與橢圓$\frac{x^2}{16}+\frac{y^2}{4}=1$相切的直線方程為x-2y+m=0,聯(lián)立直線方程和橢圓方程,由判別式等于0求得m值,把橢圓$\frac{x^2}{16}+\frac{y^2}{4}=1$上的點(diǎn)到直線x-2y+4$\sqrt{2}$=0的最大距離轉(zhuǎn)化為橢圓的兩條相切的平行線間的距離得答案.
解答 解:設(shè)與x-2y+4$\sqrt{2}$=0平行且與橢圓$\frac{x^2}{16}+\frac{y^2}{4}=1$相切的直線方程為x-2y+m=0,
聯(lián)立$\left\{\begin{array}{l}{x-2y+m=0}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,得2x2+2mx+m2-16=0.
△=4m2-8(m2-16)=128-4m2=0,解得:m=$±4\sqrt{2}$.
∴直線x-2y+4$\sqrt{2}$=0與橢圓$\frac{x^2}{16}+\frac{y^2}{4}=1$相切,
則橢圓$\frac{x^2}{16}+\frac{y^2}{4}=1$上的點(diǎn)到直線x-2y+4$\sqrt{2}$=0的最大距離為d=$\frac{|4\sqrt{2}-(-4\sqrt{2})|}{\sqrt{5}}=\frac{8\sqrt{10}}{5}$.
點(diǎn)評 本題考查橢圓的簡單性質(zhì),考查了直線和圓錐曲線的關(guān)系,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sin2x | B. | $y={x^{\frac{3}{2}}}$ | C. | $y={({\frac{1}{3}})^x}$ | D. | y=|log2x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)得到 | |
B. | 橫坐標(biāo)縮短到原來的$\frac{1}{2}$(縱坐標(biāo)不變)得到 | |
C. | 縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到 | |
D. | 縱坐標(biāo)縮短到原來的$\frac{1}{2}$(橫坐標(biāo)不變)得到 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $2\sqrt{3}$ | C. | $2\sqrt{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com