已知一個(gè)空間幾何體的三視圖如圖所示,則這個(gè)幾何體的表面積是
A.B.C.D.
B

試題分析:根據(jù)題意可知該幾何體是一個(gè)球體和一個(gè)半個(gè)圓柱體的組合體,球體的半徑為1,而圓柱體的半徑為1高為2,那么可知其表面積為 ,故選B.
點(diǎn)評(píng):解決的關(guān)鍵是對(duì)于三視圖還原為幾何體結(jié)合幾何體的表面積公式求解,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

我國(guó)齊梁時(shí)代的數(shù)學(xué)家祖暅(公元5-6世紀(jì))提出了一條原理:“冪勢(shì)既同,則積不容異.”這句話的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的任何平面所截,如果截得的兩個(gè)截面的面積總是相等,那么這兩個(gè)幾何體的體積相等.
設(shè):由曲線和直線,所圍成的平面圖形,繞軸旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體為;由同時(shí)滿足,的點(diǎn)構(gòu)成的平面圖形,繞軸旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體為.根據(jù)祖暅原理等知識(shí),通過(guò)考察可以得到的體積為            

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在三棱錐A-BCD中,側(cè)棱AB、AC、AD兩兩垂直,、的面積分別為 、,則三棱錐A-BCD的外接球的體積為_(kāi)______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某幾何體的三視圖如圖,則該幾何體的表面積為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知正四棱柱的底面邊長(zhǎng)為2,.

(1)求該四棱柱的側(cè)面積與體積;
(2)若為線段的中點(diǎn),求與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

三棱錐P-ABC中,PA⊥底面ABC,PA =3,底面ABC是邊長(zhǎng)為2的正三角形,則三棱錐P-ABC的體積等于 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某幾何體的下部分是長(zhǎng)為8,寬為6,高為3的長(zhǎng)方體,上部分是側(cè)棱長(zhǎng)都相等且高為3的四棱錐,求:

(1)該幾何體的體積;
(2)該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分) 已知一個(gè)四棱錐的三視圖如圖所示,其中,且,分別為、的中點(diǎn)

(1)求證:PB//平面EFG
(2)求直線PA與平面EFG所成角的大小
(3)在直線CD上是否存在一點(diǎn)Q,使二面角的大小為?若存在,求出CQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若軸截面為正方形的圓柱的側(cè)面積是,那么圓柱的體積等于
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案