若函數(shù)f(x)是冪函數(shù),且滿足f(2)=4,則f(
1
2
)的值為
 
考點(diǎn):冪函數(shù)的概念、解析式、定義域、值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)f(x)=xα,(α為常數(shù)).由4=2α,可得α=2即可.
解答: 解:設(shè)f(x)=xα,(α為常數(shù)).
∵4=2α,∴α=2.
∴f(x)=x2
f(
1
2
)=(
1
2
)2
=
1
4

故答案為:
1
4
點(diǎn)評(píng):本題考查了冪函數(shù)的解析式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7位同學(xué)站成一排,按下列要求,各有多少不同排法,
(1)甲站在某一固定位置;
(2)甲站中間,乙與甲相鄰;
(3)甲、乙相鄰;
(4)甲、乙兩人不相鄰;
(5)甲、乙、丙三人相鄰;
(6)甲、乙、丙三人中任何兩人都不相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ln(x-a)
x

(Ⅰ)若a=-1,證明:函數(shù)f(x)是(0,+∞)上的減函數(shù);
(Ⅱ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x-y=0平行,求a的值;
(Ⅲ)若x>0,證明:
ln(x+1)
x
x
ex-1
(其中e=2.71828…是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(4x2-4ax+a2
x
,其中a>0.
(I)當(dāng)a=4時(shí),求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若f(x)在區(qū)間[1,4]上的最小值為8,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M={平面內(nèi)的點(diǎn)(a,b)},N={f(x)|f(x)=acos2x+bsin2x},給出M到N的映射f:(a,b)→f(x)=acos2x+bsin2x,則點(diǎn)(1,
3
)的象f(x)的最小正周期為( 。
A、
π
2
B、
π
4
C、π
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若非整實(shí)數(shù)x、y、z滿足:2x=3y=6z.則.
A、
x+y
z
∈(5,6)
B、
x+y
z
∈(4,5)
C、
x+y
z
∈(3,4)
D、
x+y
z
∈(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
|2x-a|
-
(x+2)(x+b)
x2
為偶函數(shù),則a=
 
,b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,A={x|x≤0},B={x|x>-1},則集合∁U(A∩B)=( 。
A、{x|-1<x≤0}
B、{x|-1≤x≤0}
C、{x|x≤-1或x≥0}
D、{x|x≤-1或x>0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平行四邊形ABCD,點(diǎn)M1,M2,M3,…,Mn-1和N1,N2,N3,…,Nn-1分別將線段BC和DC,n等分(n∈N*,n≥2),如圖,若
AM1
+
AM2
+…+
AMn-1
+
AN1
+
AN2
+…+
ANn-1
=45
AC
,則n=( 。
A、29B、30C、31D、32

查看答案和解析>>

同步練習(xí)冊(cè)答案