(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分、第3小題滿分6分.

設(shè),常數(shù),定義運算“”:,定義運算“”: ;對于兩點,定義.

(1)若,求動點的軌跡;

(2)已知直線與(1)中軌跡交于、兩點,若,試求的值;

(3)在(2)中條件下,若直線不過原點且與軸交于點S,與軸交于點T,并且與(1)中軌跡交于不同兩點PQ , 試求的取值范圍.

(1)(2)(3)(2,+


解析:

(1)設(shè),則

  (2分)     又由≥0可得

P(,)的軌跡方程為,軌跡C為頂點在原點,焦點為的拋物線在軸上及第一象限的內(nèi)的部分                     (4分)

(2) 由已知可得  ,  整理得,

 ,得.∵,∴   (6分)

 ,           (8分)

解得(舍) ;       (10分)

 (3)∵(12分)

設(shè)直線,依題意,,則,分別過PQPP??1y軸,QQ1y軸,垂足分別為P1、Q1,則

消去y

.   (14分)

取不相等的正數(shù),∴取等的條件不成立

 ∴的取值范圍是(2,+).                  (16分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011屆陜西省師大附中、西工大附中高三第五次聯(lián)考理數(shù) 題型:解答題

.三、解答題:本大題共6小題,共75分. 解答應(yīng)寫出文字說明、證明過程或演算步驟.
16. (本題滿分12分)
已知函數(shù)為偶函數(shù), 且
(1)求的值;
(2)若為三角形的一個內(nèi)角,求滿足的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇大豐新豐中學(xué)高二上期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)     本題請注意換算單位

某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元。

(1)若該寫字樓共x層,總開發(fā)費用為y萬元,求函數(shù)y=f(x)的表達(dá)式;

(總開發(fā)費用=總建筑費用+購地費用)

(2)要使整幢寫字樓每平方米開發(fā)費用最低,該寫字樓應(yīng)建為多少層?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年陜西省、西工大附中高三第五次聯(lián)考理數(shù) 題型:解答題

三、解答題:本大題共6小題,共75分. 解答應(yīng)寫出文字說明、證明過程或演算步驟.

16. (本題滿分12分)

已知函數(shù)為偶函數(shù), 且

(1)求的值;

(2)若為三角形的一個內(nèi)角,求滿足的值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分16分)(本題中必要時可使用公式:) 

 設(shè)是各項均為正數(shù)的無窮項等差數(shù)列.

(Ⅰ)記,已知

 ,試求此等差數(shù)列的首項a1及公差d

(Ⅱ)若的首項a1及公差d都是正整數(shù),問在數(shù)列中是否包含一個非常數(shù)列 

 的無窮項等比數(shù)列?若存在,請寫出的構(gòu)造過程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分16分)(本題中必要時可使用公式:) 

 設(shè)是各項均為正數(shù)的無窮項等差數(shù)列.

(Ⅰ)記,已知

 ,試求此等差數(shù)列的首項a1及公差d;

(Ⅱ)若的首項a1及公差d都是正整數(shù),問在數(shù)列中是否包含一個非常數(shù)列 

 的無窮項等比數(shù)列?若存在,請寫出的構(gòu)造過程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案