13.定義在R上的函數(shù)f(x)滿足:f'(x)>2-f(x),f(0)=6,f'(x)是f(x)的導(dǎo)函數(shù),則不等式exf(x)>2ex+4(其中e為自然對(duì)數(shù)的底數(shù))的解集為(  )
A.(0,+∞)B.(-∞,0)∪(3,+∞)C.(-∞,0)∪(1,+∞)D.(3,+∞)

分析 令F(x)=exf(x)-2ex-4,從而求導(dǎo)F′(x)=ex(f(x)+f′(x)-2)>0,從而由導(dǎo)數(shù)求解不等式.

解答 解:令F(x)=exf(x)-2ex-4,
則F′(x)=ex[f(x)+f′(x)-2]>0,
故F(x)是R上的單調(diào)增函數(shù),
而F(0)=e0f(0)-2e0-4=0,
故不等式exf(x)>2ex+4(其中e為自然對(duì)數(shù)的底數(shù))的解集為(0,+∞)
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)單調(diào)性與奇偶性的結(jié)合,結(jié)合已知條件構(gòu)造函數(shù),然后用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若三棱錐的三條側(cè)棱兩兩垂直,側(cè)棱長(zhǎng)分別為1,$\sqrt{3}$,2,且它的四個(gè)頂點(diǎn)在同一球面上,則此球的體積為(  )
A.$\frac{{2\sqrt{2}}}{3}π$B.$3\sqrt{3}π$C.$\frac{{8\sqrt{2}}}{3}π$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知:tan(α+$\frac{π}{4}$)=-$\frac{2}{3}$,($\frac{π}{2}$<α<π).
(1)求tanα的值;
(2)求$\frac{sin2α-2co{s}^{2}α}{sin(α-\frac{π}{4})}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)F1、F2分別是橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左、右焦點(diǎn),P為橢圓上任一點(diǎn),點(diǎn)M的坐標(biāo)為(3,1),則|PM|+|PF1|的最大值為11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知直線mx+ny-2=0(mn>0)過(guò)點(diǎn)(1,1),則$\frac{1}{m}$+$\frac{1}{n}$有( 。
A.最小值4B.最大值4C.最小值2D.最大值2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,建立平面直角坐標(biāo)系xoy,x軸在地平面上,y軸垂直于地平面,單位長(zhǎng)度為1千米.某炮位于坐標(biāo)原點(diǎn).已知炮彈發(fā)射后的軌跡在方程y=kx-$\frac{1}{20}$(1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).
(1)若k=2,求炮的射程;
(2)求炮的最大射程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,為了得到g(x)=sinωx的圖象,則只要將f(x)的圖象( 。
A.向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度B.向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度
C.向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度D.向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)函數(shù)f(x)=$\frac{5}{{x}^{2}}$-3x2+2,則使得f(1)>f(log3x)成立的x取值范圍為0<x<3或x>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知二次函數(shù)f(x)=x2-2bx+a,滿足f(x)=f(2-x),且方程f(x)-$\frac{3}{4}$a=0有兩個(gè)相等的實(shí)根.
(1)求函數(shù)f(x)的 解析式.
(2)當(dāng)x∈[t,t+1](t>0)時(shí),求函數(shù)f(x)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案