A. | $\frac{400π}{3}$ | B. | 150π | C. | $\frac{500π}{3}$ | D. | $\frac{600π}{7}$ |
分析 利用勾股定理判斷△ABC為直角三角形,可求得其外接圓的半徑,利用球心到這個截面的距離為球半徑的一半,求得球的半徑R,代入球的表面積公式計算.
解答 解:∵AB2+BC2=AC2,∴△ABC為直角三角形,其外接圓半徑為$\frac{AC}{2}=5$,即截面的圓的半徑為r=5,
又球心到截面的距離為$d=\frac{R}{2}$,∴${R^2}-{(\frac{R}{2})^2}={r^2}=25$,
∴$R=\frac{10}{3}\sqrt{3}$,∴$S=4π{R^2}=\frac{400π}{3}$.
故選:A.
點評 本題考查了球的表面積公式及球心到截面圓的距離與截面圓的半徑之間的數(shù)量關系,解題的關鍵是求得三角形的外接圓的半徑.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,$\frac{3}{2}$] | B. | [-$\frac{3}{2}$,+∞) | C. | [$\frac{3}{2}$,+∞) | D. | (-∞,-$\frac{3}{2}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3ex+y-2e2=0 | B. | 3ex-y-2e2=0 | ||
C. | (e2-3e)x+y+2e2-e3=0 | D. | (e2-3e)x-y+2e2-e3=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1-$\frac{1}{e}$ | B. | 2-$\frac{2}{e}$ | C. | 1+2e2 | D. | $\frac{2}{e}$-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 7 | B. | 12 | C. | 14 | D. | 5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com