【題目】已知定義域?yàn)?/span>R的奇函數(shù),滿足,則下列敘述正確的為(

①存在實(shí)數(shù)k,使關(guān)于x的方程7個(gè)不相等的實(shí)數(shù)根

②當(dāng)時(shí),恒有

③若當(dāng)時(shí),的最小值為1,則

④若關(guān)于的方程的所有實(shí)數(shù)根之和為零,則

A.①②③B.①③C.②④D.①②③④

【答案】B

【解析】

對(duì)于①,當(dāng)時(shí),直線與函數(shù)在第一象限有3個(gè)零點(diǎn),關(guān)于x的方程7個(gè)不相等的實(shí)數(shù)根,所以①正確;

對(duì)于②,當(dāng)時(shí),函數(shù)不是單調(diào)函數(shù),所以②不正確;

對(duì)于③,令所以,則,所以③正確;

對(duì)于④,通過(guò)數(shù)形結(jié)合分析得到其是錯(cuò)誤的.

對(duì)于①,函數(shù)的圖象如圖所示,由于函數(shù)是奇函數(shù),所以只要考查的零點(diǎn)個(gè)數(shù),

由于,所以只要考慮的零點(diǎn)有3個(gè)即可.

由題得,所以直線的斜率為,此時(shí)直線與函數(shù)的圖象有5個(gè)交點(diǎn),當(dāng)時(shí),直線與函數(shù)在第一象限有3個(gè)零點(diǎn),關(guān)于x的方程7個(gè)不相等的實(shí)數(shù)根,所以①正確;

對(duì)于②,當(dāng)時(shí),函數(shù)不是單調(diào)函數(shù),所以不成立,所以②不正確;

對(duì)于③,令所以,當(dāng)時(shí),的最小值為1,則,所以③正確;

對(duì)于④,由于函數(shù)是奇函數(shù),關(guān)于的方程的所有實(shí)數(shù)根之和為零,

當(dāng)時(shí),有三個(gè)實(shí)根,,

所以的所有實(shí)數(shù)根之和為.

所以錯(cuò)誤.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,橢圓上的點(diǎn)到其左焦點(diǎn)的最大距離為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)橢圓左焦點(diǎn)的直線與橢圓交于兩點(diǎn),直線,過(guò)點(diǎn)作直線的垂線與直線交于點(diǎn),求的最小值和此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐中,平面,,F,G分別是的中點(diǎn).

(Ⅰ)求證:平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了對(duì)某種商品進(jìn)行合理定價(jià),需了解該商品的月銷(xiāo)售量(單位:萬(wàn)件)與月銷(xiāo)售單價(jià)(單位:元/件)之間的關(guān)系,對(duì)近個(gè)月的月銷(xiāo)售量和月銷(xiāo)售單價(jià)數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)分析,得到一組檢測(cè)數(shù)據(jù)如表所示:

月銷(xiāo)售單價(jià)(元/件)

月銷(xiāo)售量(萬(wàn)件)

1)若用線性回歸模型擬合之間的關(guān)系,現(xiàn)有甲、乙、丙三位實(shí)習(xí)員工求得回歸直線方程分別為:,其中有且僅有一位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的.請(qǐng)結(jié)合統(tǒng)計(jì)學(xué)的相關(guān)知識(shí),判斷哪位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的,并說(shuō)明理由;

2)若用模型擬合之間的關(guān)系,可得回歸方程為,經(jīng)計(jì)算該模型和(1)中正確的線性回歸模型的相關(guān)指數(shù)分別為,請(qǐng)用說(shuō)明哪個(gè)回歸模型的擬合效果更好;

3)已知該商品的月銷(xiāo)售額為(單位:萬(wàn)元),利用(2)中的結(jié)果回答問(wèn)題:當(dāng)月銷(xiāo)售單價(jià)為何值時(shí),商品的月銷(xiāo)售額預(yù)報(bào)值最大?(精確到

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的內(nèi)角,的對(duì)邊分別為,,.設(shè)為線段上一點(diǎn),,有下列條件:

;②;③.

請(qǐng)從以上三個(gè)條件中任選兩個(gè),求的大小和的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為考察某動(dòng)物疫苗預(yù)防某種疾病的效果,現(xiàn)對(duì)200只動(dòng)物進(jìn)行調(diào)研,并得到如下數(shù)據(jù):

未發(fā)病

發(fā)病

合計(jì)

未注射疫苗

20

60

80

注射疫苗

80

40

120

合計(jì)

100

100

200

(附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

則下列說(shuō)法正確的:(

A.至少有99.9%的把握認(rèn)為“發(fā)病與沒(méi)接種疫苗有關(guān)”

B.至多有99%的把握認(rèn)為“發(fā)病與沒(méi)接種疫苗有關(guān)”

C.至多有99.9%的把握認(rèn)為“發(fā)病與沒(méi)接種疫苗有關(guān)”

D.“發(fā)病與沒(méi)接種疫苗有關(guān)”的錯(cuò)誤率至少有0.01%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐,底面為菱形, ,H為上的點(diǎn),過(guò)的平面分別交于點(diǎn),且平面

(1)證明: ;

(2)當(dāng)的中點(diǎn), 與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)求函數(shù)的最小值;

2)設(shè),討論函數(shù)的單調(diào)性;

3)斜率為的直線與曲線交于、兩點(diǎn),

求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次投籃測(cè)試中,有兩種投籃方案:方案甲:先在A點(diǎn)投籃一次,以后都在B點(diǎn)投籃;方案乙:始終在B點(diǎn)投籃.每次投籃之間相互獨(dú)立.某選手在A點(diǎn)命中的概率為,命中一次記3分,沒(méi)有命中得0分;在B點(diǎn)命中的概率為,命中一次記2分,沒(méi)有命中得0分,用隨機(jī)變量表示該選手一次投籃測(cè)試的累計(jì)得分,如果的值不低于3分,則認(rèn)為其通過(guò)測(cè)試并停止投籃,否則繼續(xù)投籃,但一次測(cè)試最多投籃3.

(1)若該選手選擇方案甲,求測(cè)試結(jié)束后所得分的分布列和數(shù)學(xué)期望.

(2)試問(wèn)該選手選擇哪種方案通過(guò)測(cè)試的可能性較大?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案