6.已知函數(shù)f(x)=x2+alnx(a≠0).
(1)若x=1是函數(shù)f(x)的極值點(diǎn),求a的值;
(2)討論函數(shù)f(x)的單調(diào)性.

分析 (1)若x=1是函數(shù)f(x)的極值點(diǎn),f′(1)=2+a=0,即可求a的值;
(2)求導(dǎo)數(shù),分類討論,利用導(dǎo)數(shù)的正負(fù)求出函數(shù)f(x)的單調(diào)性.

解答 解:(1)∵f(x)=x2+alnx,
∴f′(x)=2x+$\frac{a}{x}$,
∵x=1是函數(shù)f(x)的極值點(diǎn),
∴f′(1)=2+a=0,
∴a=-2(5分)
(2)∵f(x)的定義域是(0,+∞),$f'(x)=\frac{{2{x^2}+a}}{x}$,
當(dāng)a>0時(shí),f′(x)>0,f(x)的增區(qū)間是(0,+∞),沒(méi)有減區(qū)間;
當(dāng)a<0時(shí),由f′(x)>0得增區(qū)間[$\sqrt{-\frac{a}{2}}$,+∞),由f′(x)<0得減區(qū)間(0,$\sqrt{-\frac{a}{2}}$].(12分)

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,考查了推理能力,分類討論的能力和計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知,△ABC內(nèi)接于圓,延長(zhǎng)AB到D點(diǎn),使得DC=2DB,DC交圓于E點(diǎn).
(1)求證:AD=2DE;
(2)若AC=DC,求證:DB=BE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)y=f(x)(x∈R)導(dǎo)函數(shù)為f′(x),f(1)=1,且f′(x)>$\frac{1}{2}$,則不等式2f(x)<x+1的解集為( 。
A.{x|x<1}B.{x|x<-1}C.{x|-1<x<1}D.{x|x<-1或x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,取相同的長(zhǎng)度單位,已知曲線C的極坐標(biāo)方程為ρ=2$\sqrt{5}$sinθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).
(Ⅰ)寫(xiě)出曲線C的直角坐標(biāo)方程和直線l的普通方程.
(Ⅱ)若P(3,$\sqrt{5}$),直線l與曲線C相交于M,N兩點(diǎn),求|PM|+|PN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)函數(shù)f(x)=x3-12x+4,x∈R.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若關(guān)于x的方程f(x)=a有3個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=-$\frac{1}{3}}$x3+$\frac{5}{2}}$x2-6x+5的單調(diào)增區(qū)間是( 。
A.(-∞,2)和(3,+∞)B.(2,3)C.(-1,6)D.(-3,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,已知⊙O的半徑OB=5cm,弦AB=6cm,D是$\widehat{AB}$的中點(diǎn),求弦BD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=|2x-1|,g(x)=x2-(2+3k)x+2k+1.若方程g[f(x)]=0有3個(gè)不同實(shí)根,則k的取值范圍為$k=-\frac{1}{2}$或k>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知直線l經(jīng)過(guò)點(diǎn)P(-2,6),傾斜角α=$\frac{π}{4}$,圓C的極坐標(biāo)方程是ρ=2cosθ.
(Ⅰ)寫(xiě)出直線l的參數(shù)方程,并把圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C上的點(diǎn)A到直線l的距離最小,點(diǎn)B到直線l的距離最大,求點(diǎn)A,B的橫坐標(biāo)之積.

查看答案和解析>>

同步練習(xí)冊(cè)答案