【題目】已知二次函數的最小值為1,且.
(1)求的解析式.
(2)在區(qū)間[-1,1]上,的圖象恒在的圖象上方,試確定實數的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域是{x|x≠0},對定義域內的任意,都有f(·)=f()+f(),且當x>1時,f(x)>0,f(2)=1.
(1)證明:(x)是偶函數;
(2)證明:(x)在(0,+∞)上是增函數;
(3)解不等式(2-1)<2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(12分)已知函數f(x)=
(1)判斷函數在區(qū)間[1,+∞)上的單調性,并用定義證明你的結論.
(2)求該函數在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若實數x、y、m滿足|x﹣m|<|y﹣m|,則稱x比y接近m.
(1)若2x比1接近3,求x的取值范圍;
(2)已知函數f(x)定義域D=(﹣∞,0)∪(0,1)∪(1,3)∪(3,+∞),對于任意的x∈D,f(x)等于x2﹣2x與x中接近0的那個值,寫出函數f(x)的解析式,若關于x的方程f(x)﹣a=0有兩個不同的實數根,求出a的取值范圍;
(3)已知a,b∈R,m>0且a≠b,求證: 比 接近0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=lnx﹣ ax2﹣bx,若x=1是f(x)的極大值點,則a的取值范圍為( )
A.(﹣1,0)
B.(﹣1,+∞)
C.(0,+∞)
D.(﹣∞,﹣1)∪(0,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲袋中有1只黑球,3只紅球;乙袋中有2只黑球,1只紅球.
(1)從甲袋中任取兩球,求取出的兩球顏色不相同的概率;
(2)從甲,乙兩袋中各取一球,求取出的兩球顏色相同的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)是定義在實數集R上的函數,且y=f(x+1)是偶函數,當x≥1時,f(x)=2x﹣1,則f(),f(),f()的大小關系是( 。
A. f()<f()<f() B. f()<f()<f()
C. f()<f()<f() D. f()<f()<f()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的定義域為,對任意實數,都有.
(1)求的值并判斷函數的奇偶性;
(2)已知函數,
①驗證函數是否滿足題干中的條件,即驗證對任意實數,是否成立;
②若函數,其中,討論函數的零點個數情況.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=loga(1+x),g(x)=loga(1-x),(a>0且a≠1),若h(x)=f(x)-g(x).
(1)求函數h(x)的定義域;
(2)判斷h(x)的奇偶性,并說明理由;
(3)若f(2)=1,求使h(x)>0成立的x的集合.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com