【題目】若實(shí)數(shù)x、y、m滿(mǎn)足|x﹣m|<|y﹣m|,則稱(chēng)x比y接近m.
(1)若2x比1接近3,求x的取值范圍;
(2)已知函數(shù)f(x)定義域D=(﹣∞,0)∪(0,1)∪(1,3)∪(3,+∞),對(duì)于任意的x∈D,f(x)等于x2﹣2x與x中接近0的那個(gè)值,寫(xiě)出函數(shù)f(x)的解析式,若關(guān)于x的方程f(x)﹣a=0有兩個(gè)不同的實(shí)數(shù)根,求出a的取值范圍;
(3)已知a,b∈R,m>0且a≠b,求證: 比 接近0.
【答案】
(1)解:因?yàn)?x比1接近3,所以|2x﹣3|<|1﹣3|,
即|2x﹣3|<2,解得 <x< ,
所以,x的取值范圍為:( , )
(2)解:分類(lèi)討論如下:
①當(dāng)x2﹣2x比x接近于0時(shí),|x2﹣2x|<|x|,
解得,x∈(1,3),
②當(dāng)x比x2﹣2x接近于0時(shí),|x2﹣2x|>|x|,
解得,x∈(﹣∞,0)∪(0,1)∪(3,+∞),
所以,f(x)= ,
畫(huà)出f(x)的圖象,如下圖,
因?yàn)榉匠蘤(x)=a有兩個(gè)實(shí)根,根據(jù)函數(shù)圖象得,
a∈(﹣1,0)∪(0,1)
(3)解:對(duì)兩式 , 平方作差得,
△=( )2﹣( )2
= = ,
因?yàn)閍,b∈R,m>0且a≠b,所以,△>0恒成立,
所以, >| |,
即 比 接近0.
【解析】(1)直接根據(jù)定義,問(wèn)題等價(jià)為|2x﹣3|<|1﹣3|,解出即可;(2)先求出函數(shù)f(x)的解析式并畫(huà)出函數(shù)圖象,再運(yùn)用數(shù)形結(jié)合的方法,求a的取值范圍;(3)直接運(yùn)用作差法比較兩式的大。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解絕對(duì)值不等式的解法的相關(guān)知識(shí),掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱中, 平面, , , 為的中點(diǎn).
(1)求四棱錐的體積;
(2)求證: ;
(3)判斷線(xiàn)段上是否存在一點(diǎn) (與點(diǎn)不重合),使得四點(diǎn)共面? (結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sinx,若存在x1 , x2 , …,xn滿(mǎn)足0≤x1<x2<…<xn≤nπ,n∈N+ , 且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm﹣1)﹣f(xm)|=12,(m≥2,m∈N+),當(dāng)m取最小值時(shí),n的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖像經(jīng)過(guò)點(diǎn) ,且滿(mǎn)足,
(1)求的解析式;
(2)已知,求函數(shù)在的最大值和最小值;
函數(shù)的圖像上是否存在這樣的點(diǎn),其橫坐標(biāo)是正整數(shù),縱坐標(biāo)是一個(gè)完全平方數(shù)?如果存在,求出這樣的點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若f(x)是定義在(0,+∞)上的增函數(shù),且對(duì)一切x,y>0,滿(mǎn)足.
(1)求f(1)的值;
(2)若f(6)=1,解不等式f(x+3)-f()<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(ax2-x+1)(a>0,a≠1).
(1) 若a=,求函數(shù)f(x)的值域.
(2) 當(dāng)f(x)在區(qū)間上為增函數(shù)時(shí),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的最小值為1,且.
(1)求的解析式.
(2)在區(qū)間[-1,1]上,的圖象恒在的圖象上方,試確定實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)一批A產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤(rùn)12萬(wàn)元.該公司通過(guò)設(shè)備升級(jí),生產(chǎn)這批A產(chǎn)品所需原材料減少了x噸,且每噸原材料創(chuàng)造的利潤(rùn)提高0.5x%;若將少用的x噸原材料全部用于生產(chǎn)公司新開(kāi)發(fā)的B產(chǎn)品,每噸原材料創(chuàng)造的利潤(rùn)為12(a﹣ x)萬(wàn)元(a>0).
(1)若設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤(rùn)不低于原來(lái)生產(chǎn)該批A產(chǎn)品的利潤(rùn),求x的取值范圍.
(2)若生產(chǎn)這批B產(chǎn)品的利潤(rùn)始終不高于設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤(rùn),求a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在點(diǎn)處的切線(xiàn)方程為.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間和極值.
【答案】(1);(2)見(jiàn)解析.
【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)幾何意義得,再與聯(lián)立方程組解得, (2)先函數(shù)導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)函數(shù)符號(hào)變化規(guī)律,進(jìn)而確定單調(diào)區(qū)間和極值
試題解析:(1),切線(xiàn)為,即斜率,縱坐標(biāo)
即, ,解得,
解析式
(2) ,定義域?yàn)?/span>
得到在單增,在單減,在單增
極大值,極小值.
【題型】解答題
【結(jié)束】
20
【題目】如圖:在四棱錐中,底面為菱形,且, 底面,
, , 是上點(diǎn),且平面.
(1)求證: ;(2)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com