解:(1)設(shè)x∈[-e,0),則-x∈(0,e]
∴f(-x)=-ax+ln(-x)
由f(x)為奇函數(shù)可得,f(-x)=-f(x)
∴-f(x)=-ax+ln(-x)
∴f(x)=ax-ln(-x)
∴
(2)假設(shè)存在負(fù)數(shù)a滿足條件
由(1)可得,x∈[-e,0)f(x)=ax-ln(-x)
令f′(x)>0可得
,f′(x)<0可得
若
,則函數(shù)在
單調(diào)遞增,在
單調(diào)遞減,則
∴
若
,則函數(shù)在[-e,0)單調(diào)遞增,則
=
a=2e(舍)
故
(3)a=-1,f(x)=
∴|f(x)|=|x|-ln|x|為偶函數(shù),故只要考慮x∈(0,e]時,f(x)=x-lnx>0
而此時,g(x)=
=
,x∈(0,e]
≥0可得,x≥1,f′(x)<0可得,x<1
∴函數(shù)f(x)在(0,1]上單調(diào)遞減,在[1,e]單調(diào)遞增,則f(x)
min=f(1)=1
∴
在(0,e]上恒成立,則可得函數(shù)g(x)在(0,e]單調(diào)遞增,則
而
即
x∈[-e,0)同理可證
∴
分析:(1)設(shè)x∈[-e,0),則-x∈(0,e],從而可得f(-x)=-ax+ln(-x),結(jié)合f(x)為奇函數(shù)可求f(x),x∈[-e,0)
(2)假設(shè)存在負(fù)數(shù)a滿足條件,由(1)可得,x∈[-e,0)f(x)=ax-ln(-x),結(jié)合函數(shù)的導(dǎo)數(shù)
需分,
;
,兩種情況判斷函數(shù)在[-e,0}上的單調(diào)性,進(jìn)而可求函數(shù)的最小值,進(jìn)而可求a
(3)a=-1,f(x)=
,從而可得|f(x)|=|x|-ln|x|為偶函數(shù),故只要考慮x∈(0,e]時,f(x)=x-lnx>0而此時,g(x)=
=
,x∈(0,e]
結(jié)合
判斷函數(shù)f(x)的單調(diào)性可求f(x)
min=f(1)=1,而
可得
可證
,從而可證
點評:本題主要考查了利用函數(shù)的奇偶性求解函數(shù)的解析式,及利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求解函數(shù)的最值,利用單調(diào)性證明不等式,解題的關(guān)鍵是熟練應(yīng)用函數(shù)的性質(zhì).是綜合性較強(qiáng)的試題.