分析 (1)分直線l垂直于x軸時(shí)和直線l不垂直于x軸兩種情況,分別求出滿足$|AB|=2\sqrt{3}$的直線方程,綜合可得得答案;
(2)設(shè)切點(diǎn)M(x1,y1),N(x2,y2),則可得切線PM和PN的方程,進(jìn)而可得直線NM方程.
解答 解:(1)①當(dāng)直線l垂直于x軸時(shí),則此時(shí)直線方程為x=1,l與圓的兩個(gè)交點(diǎn)坐標(biāo)為$(1,\sqrt{3})$和$(1,-\sqrt{3})$,其距離為$2\sqrt{3}$滿足題意;
②若直線l不垂直于x軸,設(shè)其方程為y-2=k(x-1),即kx-y-k+2=0,
設(shè)圓心到此直線的距離為d,則$2\sqrt{3}=2\sqrt{4-{d^2}}$,得d=1,
∴$1=\frac{|-k+2|}{{\sqrt{{k^2}+1}}}$,$k=\frac{3}{4}$,故所求直線方程為3x-4y+5=0,
綜上所述,所求直線為3x-4y+5=0或x=1.
(2)設(shè)切點(diǎn)M(x1,y1),N(x2,y2),則切線PM方程為x1x+y1y=4,
切線PN方程為:x2x+y2y=4,
因?yàn)辄c(diǎn)P在直線QM上,則x1+2y1=4,
同理可得x2+2y2=4,
所以直線MN的方程為x+2y=4.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是直線與圓的位置關(guān)系,弦長(zhǎng)公式,直線方程,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
組號(hào) | 分組 | 回答正確 的人數(shù) | 回答正確的人數(shù) 占本組的頻率 |
第1組 | [15,25) | 5 | 0.5 |
第2組 | [25,35) | a | 0.9 |
第3組 | [35,45) | 27 | x |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65) | 3 | 0.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1∈M | B. | 0∈M | C. | 1∈M | D. | 2∈M |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$+y2=1 | B. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1 | C. | $\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{3}$+y2=1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com