已知三棱錐P-ABC的棱長都是2,點D是棱AP上不同于P的點.
(1)試用反證法證明直線BD與直線CP是異面直線.
(2)求三棱錐P-ABC的體積VP-ABC

【答案】分析:(1)假設(shè)BD與CP不是異面直線,即BD與CP都在平面α上,從而可得出點A、B、C、P都在平面α上,這與P-ABC是三棱錐矛盾,故假設(shè)不成立,得證;
(2)求三棱錐P-ABC的體積VP-ABC.選△ABC為底,故關(guān)鍵是求出底面上的高,為此利用底面三角形是正三角形,可求.
解答:解:(1)證明:(反證法)假設(shè)BD與CP不是異面直線.(2分)
設(shè)BD與CP都在平面α上.∵P∈α,D∈α,∴PD?α.又A∈PD,∴A∈α.
∴點A、B、C、P都在平面α上,這與P、A、B、C不共面(P-ABC是三棱錐)矛盾,于是,假設(shè)不成立.(5分)
所以直線BD與CP是異面直線.(6分)
(2)設(shè)錐頂點P在底面的射影為O.∵P-ABC的棱長都是2,∴△ABC是正三角形.
,
即O為底面三角形的中心,因此P-ABC為正三棱錐.連接BO并延長交AC于E,則BE⊥AC.
∵AB=BC=AC=PB=2,∴. (8分)
,進(jìn)一步可得.   (10分)

=
=.                                 (12分)
點評:本題的考點是反證法,主要考查反證法證明異面直線問題,關(guān)鍵是利用反證法的步驟,恰當(dāng)反設(shè),通過推理論證引出矛盾,考查三棱錐體積的計算,關(guān)鍵是選好底面,求出高.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐P-ABC的三條側(cè)棱PA,PB,PC兩兩相互垂直,且PA=2
3
,PB=3,PC=2外接球的直徑等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐P-ABC中,PC⊥底面ABC,AB=BC,D、F分別為AC、PC的中點,DE⊥AP于E.
(Ⅰ)求證:AP⊥平面BDE;
(Ⅱ)若AE:EP=1:2,求截面BEF分三棱錐P-ABC所成上、下兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱錐P-ABC,∠ACB=90°,CB=4,AB=20,D為AB中點,M為PB的中點,且△PDB是正三角形,PA⊥PC.
(I)求證:DM∥平面PAC;
(II)求證:平面PAC⊥平面ABC;
(Ⅲ)求三棱錐M-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•河西區(qū)二模)如圖,已知三棱錐P-ABC中,PA⊥面ABC,其中正視圖為Rt△PAC,AC=2
6
,PA=4,俯視圖也為直角三角形,另一直角邊長為2
2

(Ⅰ)畫出側(cè)視圖并求側(cè)視圖的面積;
(Ⅱ)證明面PAC⊥面PAB;
(Ⅲ)求直線PC與底面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃浦區(qū)二模)已知三棱錐P-ABC的棱長都是2,點D是棱AP上不同于P的點.
(1)試用反證法證明直線BD與直線CP是異面直線.
(2)求三棱錐P-ABC的體積VP-ABC

查看答案和解析>>

同步練習(xí)冊答案