已知cosα=3sinα,則
sin3α-sin2αcosα+cos2αsinα
cos3α
=( 。
分析:所求表達(dá)式分子與分母同除cos3α,化為正切函數(shù)的關(guān)系式,即可求解.
解答:解:因?yàn)閏osα=3sinα,tanα=
1
3

sin3α-sin2αcosα+cos2αsinα
cos3α
=
tan3α-tan2α+tanα
1
=(
1
3
)3-(
1
3
)2+
1
3
=
7
27

故選B.
點(diǎn)評(píng):本題考查同角三角函數(shù)的基本關(guān)系式的應(yīng)用,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(-
3
sinωx,cosωx),
b
=(cosωx,cosωx)(ω>0)
,令函數(shù)f(x)=
a
b
,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos(α+β)+cos(α-β)=
4
5
,sin(α+β)+sin(α-β)=
3
5
,求:
(1)tanα;
(2)
2(cos
α
2
)
2
-3sinα-1
2
sin(α+
π
4
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知cosα=3sinα,則
sin3α-sin2αcosα+cos2αsinα
cos3α
=(  )
A.
1
3
B.
7
27
C.
1
9
D.
13
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年黑龍江省哈爾濱三中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知cosα=3sinα,則=( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案