20.下列命題中的假命題是(  )
A.?x∈R,ex>0B.$?{x_0}∈{N^*},sin\frac{π}{2}{x_0}=1$
C.?x0∈R,lnx0<0D.?x∈N,x2>0

分析 A,由指數(shù)函數(shù)y=ex可判定;
B,比如當x0=1時,sin$\frac{π}{2}{x}_{0}=1$;
C,x0∈(0.1)時,lnx0<0;
D,0∈N,02=0;

解答 解:對于A,由指數(shù)函數(shù)y=ex知,A為真命題;
對于B,比如當x0=1時,sin$\frac{π}{2}{x}_{0}=1$,故正確;
對于C,x0∈(0.1)時,lnx0<0,故正確;
對于D,0∈N,02=0,故錯;
故選:D

點評 本題考查了命題真假的判定,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知$tan\;α+\frac{1}{tan\;α}=\frac{5}{2}$,求$2{sin^2}({3π-α})-3cos({\frac{π}{2}+α})sin({\frac{3π}{2}-α})+2$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知四面體ABCD,$\overrightarrow{DA}$=$\overrightarrow{a}$,$\overrightarrow{DB}$=$\overrightarrow$,$\overrightarrow{DC}$=$\overrightarrow{c}$,點M在棱DA上,$\overrightarrow{DM}$=3$\overrightarrow{MA}$,N為BC中點,則$\overrightarrow{MN}$=( 。
A.-$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$B.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$C.-$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$D.$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.下列命題中,所有真命題的序號是(3).
(1)函數(shù)f(x)=ax-1+3(a>0且a≠1)的圖象一定過定點P(1,3);
(2)函數(shù)f(x-1)的定義域是(1,3),則函數(shù)f(x)的定義域為(2,4);
(3)已知函數(shù)f(x)=x2+x+a在(0,1)上有零點,則實數(shù)的取值范圍是(-2,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.橢圓$\frac{x^2}{2}+\frac{y^2}{4}=2$的焦距為( 。
A.2B.$2\sqrt{2}$C.4D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知P是圓C:x2+y2-2x+2y=0上一個動點,則點P到直線x-y+1=0距離最大值與最小值的積為( 。
A.$\frac{5}{2}$B.$3\sqrt{2}$C.5D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知動圓過定點F(1,0),且與定直線l:x=-1相切.
(1)求動圓圓心的軌跡C的方程;
(2)直線l與C相交所得弦AB中點為(2,1),O為坐標原點,求$\overrightarrow{OA}•\overrightarrow{OB}$及$|{\overrightarrow{AB}}|$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=x3-3x,則函數(shù)g(x)=f(f(x))-1的零點個數(shù)為( 。
A.3B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=(m2-m-1)xm是冪函數(shù),且在x∈(0,+∞)上為增函數(shù),則實數(shù)m的值為( 。
A.m=-1或m=2B.m=2C.m=-1D.m=-2

查看答案和解析>>

同步練習冊答案