設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,滿足,且恰為等比數(shù)列的前三項(xiàng).
(1)證明:數(shù)列為等差數(shù)列; (2)求數(shù)列的前項(xiàng)和.
(1)見解析; (2).
解析試題分析:(1)根據(jù)遞推關(guān)系式得,結(jié)合恰為等比數(shù)列的前三項(xiàng),得到結(jié)論. (2)先由得到,兩式相減,利用錯(cuò)位相減法求前n項(xiàng)和. 所以.
(1)當(dāng)時(shí),,則,
于是,而,,故, 2分
所以時(shí),為公差為2的等差數(shù)列,
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/cd/b/1mutn2.png" style="vertical-align:middle;" />恰為等比數(shù)列的前三項(xiàng),所以
即,解得, 3分
由條件知,則, 4分
于是,
所以為首項(xiàng)是1,公差為2的等差數(shù)列; 6分
(2)由(1)知, 8分
,
兩邊同乘以3得,
, 9分
兩式相減得
, 12分
所以. 13分
考點(diǎn):遞推關(guān)系式;等差數(shù)列的通項(xiàng)公式;錯(cuò)位相減法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等比數(shù)列中,
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等差數(shù)列的前n項(xiàng)和為,已知,為整數(shù),且.
(1)求的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)滿足以下兩個(gè)條件得有窮數(shù)列為階“期待數(shù)列”:
①,②.
(1)若等比數(shù)列為階“期待數(shù)列”,求公比;
(2)若一個(gè)等差數(shù)列既為階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項(xiàng)公式;
(3)記階“期待數(shù)列”的前項(xiàng)和為.
()求證:;
()若存在,使,試問數(shù)列是否為階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的首項(xiàng),公差,等比數(shù)列滿足
(1)求數(shù)列和的通項(xiàng)公式;
(2)設(shè)數(shù)列對任意均有,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和,數(shù)列滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足奇數(shù)項(xiàng)成等差數(shù)列,而偶數(shù)項(xiàng)成等比數(shù)列,且,成等差數(shù)列,數(shù)列的前項(xiàng)和為.
(1)求通項(xiàng);
(2)求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com