【題目】在平面直角坐標(biāo)中,圓與圓相交與兩點(diǎn).
(I)求線段的長.
(II)記圓與軸正半軸交于點(diǎn),點(diǎn)在圓C上滑動,求面積最大時的直線的方程.
【答案】(I);(II)或.
【解析】
(I)先求得相交弦所在的直線方程,再求得圓的圓心到相交弦所在直線的距離,然后利用直線和圓相交所得弦長公式,計算出弦長.(II)先求得當(dāng)時,取得最大值,根據(jù)兩直線垂直時斜率的關(guān)系,求得直線的方程,聯(lián)立直線的方程和圓的方程,求得點(diǎn)的坐標(biāo),由此求得直線的斜率,進(jìn)而求得直線的方程.
(I)由圓O與圓C方程相減可知,相交弦PQ的方程為.
點(diǎn)(0,0)到直線PQ的距離,
(Ⅱ),.
當(dāng)時,取得最大值.
此時,又則直線NC為.
由,或
當(dāng)點(diǎn)時,,此時MN的方程為.
當(dāng)點(diǎn)時,,此時MN的方程為.
∴MN的方程為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的不等式.
(1)當(dāng)時,解不等式;
(2)如果不等式的解集為空集,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某個產(chǎn)品有若干零部件構(gòu)成,加工時需要經(jīng)過7道工序,分別記為.其中,有些工序因?yàn)槭侵圃觳煌牧悴考,所以可以在幾臺機(jī)器上同時加工;有些工序因?yàn)槭菍ν粋零部件進(jìn)行處理,所以存在加工順序關(guān)系,若加工工序必須要在工序完成后才能開工,則稱為的緊前工序.現(xiàn)將各工序的加工次序及所需時間(單位:小時)列表如下:
工序 | |||||||
加工時間 | 3 | 4 | 2 | 2 | 2 | 1 | 5 |
緊前工序 | 無 | 無 |
現(xiàn)有兩臺性能相同的生產(chǎn)機(jī)器同時加工該產(chǎn)品,則完成該產(chǎn)品的最短加工時間是( )
(假定每道工序只能安排在一臺機(jī)器上,且不能間斷.)
A. 11個小時 B. 10個小時 C. 9個小時 D. 8個小時
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔仔細(xì)算相還”,其大意為:“有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地”,則該人第五天走的路程為( )
A. 6里B. 12里C. 24里D. 48里
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某設(shè)計師設(shè)計的型飾品的平面圖,其中支架,,兩兩成,,,且.現(xiàn)設(shè)計師在支架上裝點(diǎn)普通珠寶,普通珠寶的價值為,且與長成正比,比例系數(shù)為(為正常數(shù));在區(qū)域(陰影區(qū)域)內(nèi)鑲嵌名貴珠寶,名貴珠寶的價值為,且與的面積成正比,比例系數(shù)為.設(shè),.
(1)求關(guān)于的函數(shù)解析式,并寫出的取值范圍;
(2)求的最大值及相應(yīng)的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為數(shù)列的前項(xiàng)和,,,若關(guān)于正整數(shù)的不等式的解集中的整數(shù)解有兩個,則正實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(wx+φ)(w>0,0<φ<π)的周期為π,圖象的一個對稱中心為( ,0),將函數(shù)f(x)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將得到的圖象向右平移個 單位長度后得到函數(shù)g(x)的圖象.
(1)求函數(shù)f(x)與g(x)的解析式
(2)是否存在x0∈( ),使得f(x0),g(x0),f(x0)g(x0)按照某種順序成等差數(shù)列?若存在,請確定x0的個數(shù),若不存在,說明理由;
(3)求實(shí)數(shù)a與正整數(shù)n,使得F(x)=f(x)+ag(x)在(0,nπ)內(nèi)恰有2013個零點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com