【題目】如圖,在四棱錐中,平面 平面,BC//平面PAD, ,.

求證:(1) 平面

(2)平面平面.

【答案】(1)見解析;(2)見解析.

【解析】試題分析:(1)由BC//平面PAD可得BC//AD,根據(jù)線面平行的判定定理可得平面;(2)過PPH ABH,由條件可得平面,從而可證得BC PH,又BC PB,故有BC 平面PAB,所以平面PBC 平面PAB .

試題解析

(1)因為BC//平面PAD,

BC平面ABCD,平面ABCD平面PAD = AD,

所以BC//AD ,

又因為AD 平面PBC,BC平面PBC,

所以平面

(2)過PPH ABH,

因為平面 平面,且平面 平面=AB,

所以平面

因為BC 平面ABCD,

所以BC PH.

因為 ,

所以BC PB,

,

于是點HB不重合,即PB PH = H.

因為PB,PH 平面PAB,

所以BC 平面PAB

因為BC 平面PBC,

故平面PBC 平面AB.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出如圖所示的對應(yīng):

其中構(gòu)成從A到B的映射的個數(shù)為(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足,且是等比數(shù)列.

1)求數(shù)列的通項公式;

2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+ +b,其中a,b是常數(shù)且a>0.
(1)用函數(shù)單調(diào)性的定義證明f(x)在區(qū)間(0, ]上是單調(diào)遞減函數(shù);
(2)已知函數(shù)f(x)在區(qū)間[ ,+∞)上是單調(diào)遞增函數(shù),且在區(qū)間[1,2]上f(x)的最大值為5,最小值為3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)方程有3個不同的實根,求實數(shù)的取值范圍;

(Ⅲ)當(dāng)時,若對于任意的,都存在,使得,求滿足條件的正整數(shù)的取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(文科選做)如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點E、F分別是棱BC,CC1的中點,P是側(cè)面BCC1B1內(nèi)一點,若A1P∥平面AEF,則線段A1P長度的取值范圍是_____。

(理科選做)在正方體ABCD-A1B1C1D1中,點EBB1的中點,則平面A1ED與平面ABCD所成的銳二面角的余弦值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos4x﹣sin4x.下列結(jié)論正確的是(
A.函數(shù)f(x)在區(qū)間[0, ]上是減函數(shù)
B.函數(shù)f(x)的圖象關(guān)于原點對稱
C.f(x)的最小正周期為
D.f(x)的值域為[﹣ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 是自然對數(shù)的底數(shù), ).

(Ⅰ)求證: ;

(Ⅱ)已知表示不超過的最大整數(shù),如, ,若對任意,都存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了選拔優(yōu)秀學(xué)生參加廣州市高二級數(shù)學(xué)競賽.現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機抽取了5次,記錄如下(單位:分):

甲  83  81  79  95  92 

乙  92  85  75  88  90 

(1)甲乙兩人分數(shù)的極差分別是多少?并用莖葉圖表示這兩組數(shù)據(jù).

(2)甲乙兩人這5次成績的平均分和方差各是多少?從穩(wěn)定性的角度考慮,你認為選派哪位學(xué)生參加比賽較合適?

查看答案和解析>>

同步練習(xí)冊答案