已知集合A={x|x2-3x+2≤0},B={x||x|>1},則集合A∩B=
 
考點:交集及其運算
專題:集合
分析:求出A與B中不等式的解集確定出A與B,找出兩集合的交集即可.
解答: 解:由A中方程變形得:(x-1)(x-2)≤0,
解得:1≤x≤2,即A={x|1≤x≤2};
由B中方程解得:x<-1或x>1,即B={x|x<-1或x>1},
則A∩B={x|1<x≤2}.
故答案為:{x|1<x≤2}
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某項競賽分為初賽、復(fù)賽、決賽三個階段進行,每個階段選手要回答一個問題.規(guī)定正確回答問題者進入下一階段競賽,否則即遭淘汰.已知某選手通過初賽、復(fù)賽、決賽的概率分別是
3
4
,
1
2
,
1
4
,且各階段通過與否相互獨立.
(1)求該選手在復(fù)賽階段被淘汰的概率;
(2)設(shè)該選手在競賽中回答問題的個數(shù)為ξ,求ξ的分布列與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項等比數(shù)列{an}中,a5,a95為方程x2+10x+16=0的兩根,則a20•a50•a80的值為( 。
A、256B、±256
C、64D、±64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個集合:
①A={x|y=x2+1};
②B={y|y=x2+1,x∈R};
③C={(x,y)|y=x2+1,x∈R};
④D={不小于1的實數(shù)}.
其中相同的集合是( 。
A、①與②B、①與④
C、②與③D、②與④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對邊,向量
m
=(b,2a-c),
n
=(cosB,cosC),且
m
n

(1)求角B的大。
(2)設(shè)f(x)=cos(ωx-
B
2
)+sinωx  (ω<0),且f(x)的最小正周期為π,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a是實數(shù),
a+i
1-i
是純虛數(shù),則a等于(  )
A、1
B、-1
C、
2
D、-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為{x|x≠0},函數(shù)g(x)=xf(x)為偶函數(shù),且g(-1)=0,若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,則f(x+1)>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x|(x-m)(m>0),試畫出函數(shù)f(x)的圖象,并根據(jù)圖象解決下列兩問題.
(1)寫出函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[-1,
1
2
]的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域在R上的函數(shù)f(x)滿足f(1)=1,f(1-x)=1-f(x),2f(x)=f(4x),且當(dāng)0≤x1≤x2≤1時,f(x1)≤f(x2),則f(
1
33
)=
 

查看答案和解析>>

同步練習(xí)冊答案