已知過拋物線y2=12x焦點的一條直線與拋物線相交于A,B兩點,若|AB|=14,則線段AB的中點到y(tǒng)軸的距離等于( 。
A、1B、2C、3D、4
考點:直線與圓錐曲線的關(guān)系
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)AB的中點為E,過 A、E、B 分別作準(zhǔn)線的垂線,垂足分別為 C、G、D,如圖所示,由EF為直角梯形的中位線及拋物線的定義求出EG,則 EH=EG-1 為所求.
解答: 解:拋物線y2=12x焦點(3,0),準(zhǔn)線為 l:x=-3,
設(shè)AB的中點為E,過 A、E、B分別作準(zhǔn)線的垂線,垂足分別為 C、G、D,EF交縱軸于點H,如圖所示:
則由EF為直角梯形的中位線知,
EG=
AC+BD
2
=
AF+BF
2
=
AB
2
=7,
∴EH=EG-3=4,
則AB的中點到y(tǒng)軸的距離等于4.
故選:D.
點評:本題考查直線與拋物線的位置關(guān)系,拋物線的簡單性質(zhì)的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,若∠B=90°,∠ACD=45°,BC=3,BD=1,則AD=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,∠BAC=90°,AD⊥BC于D,求證:|
BC
|2=|
DB
+
DA
|2+|
DC
+|
DA
|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知棱柱ABCD-A1B1C1D1的底面是正方形,且AA1⊥平面ABCD,E為棱AA1的中點,F(xiàn)為線段BD1的中點.
(1)證明:EF∥平面ABCD;    
(2)證明:EF⊥平面BB1D1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知a1=2,S4=26.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Pn=a1+a4+…+a3n-2,Qn=a10+a12+…+a2n+8,試比較Pn與Qn的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=sinωxcosωx+
3
sin2ωx-
3
2
(ω>0)的圖象與直線y=m(m為常數(shù))相切,并且切點的橫坐標(biāo)依次構(gòu)成公差為π的等差數(shù)列.
(Ⅰ)求ω及m的值;
(Ⅱ)求函數(shù)y=f(x)在x∈[0,2π]上所有零點的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直四棱柱ABC-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=
2
,AA1=3,E為CD上一點,DE=1,EC=3.
(Ⅰ)證明:BE⊥平面BB1C1C;
(Ⅱ)求直線C1E與平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗,借鑒其原理,我們也可以采用計算機隨機數(shù)模擬實驗的方法來估計π的值:先由計算機產(chǎn)生1200對0~1之間的均勻隨機數(shù)x,y;再統(tǒng)計兩個數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對(x,y)的個數(shù)m;最后再根據(jù)統(tǒng)計數(shù)m來估計π的值,假如統(tǒng)計結(jié)果是m=940,那么可以估計π≈
 
(精確到0.001)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x∈[-1,1]時,-2x2+2ax+4≥0恒成立,求a的范圍.

查看答案和解析>>

同步練習(xí)冊答案