數(shù)列{bn}(n∈N*)是遞增的等比數(shù)列,且b1+b3=5,b1•b3=4.
(1)若an=log2bn+3,求證:數(shù)列{an}是等差數(shù)列;
(2)若
a
2
1
+a2+a3+
…+am≤a46,求m的最大值.
分析:(1)由b1+b3=5,b1b3=4,且b1<b3可求b1,b3,進(jìn)而可求公比q,代入等比數(shù)列的通項(xiàng)公式;由an=log2bn+3=n+2,要證明數(shù)列{an}是等差數(shù)列,只要證明an+1-an=d(d為常數(shù));
(2)根據(jù)等差數(shù)列的前n項(xiàng)和公式得出
a
2
1
+a2+a3+
…+am=9+
(4+m+2)(m-1)
2
≤48,解出m范圍即可得出答案.
解答:解:(1)∵b1+b3=5,b1b3=4,且b1<b3
∴b1=1,b3=4
∴q=2
∴bn=2n-1
∵an=log2bn+3=n+2,
∵an+1-an=(n+1)+2-(n+2)=1,
∴an=3+(n-1)×1=n+2
所以數(shù)列{an}是以3為首項(xiàng),1為公差的等差數(shù)列.
(2)由(1)可得
a
2
1
+a2+a3+
…+am=9+
(a2+am)(m-1)
2
≤48

即9+
(4+m+2)(m-1)
2
≤48
整理得m2+5m-84≤0
解得:-12≤m≤7
∵m∈N*
∴mmax=7
點(diǎn)評(píng):本題主要考查了等比數(shù)列的通項(xiàng) 公式及等差數(shù)列的定義在證明等差數(shù)列中的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}與數(shù)列{bn}(n∈N*,n≥1)滿足:①a1<0,b1>0;②當(dāng)k≥2時(shí),ak與bk滿足如下條件:
當(dāng)
ak-1+bk-1
2
≥0時(shí),ak=ak-1,,bk=
ak-1+bk-1
2
;當(dāng)
ak-1+bk-1
2
<0時(shí),ak=
ak-1+bk-1
2
,bk=bk-1
求:(1)用a1,b1表示bn-an
(2)當(dāng)b1>b2>…>bn(n≥2)時(shí),用a1,b1表示bk.(k=1,2,…n)
(3)當(dāng)n(n≥2,n∈N*)是滿足b1>b2>…>bn(n≥2)的最大整數(shù)時(shí),用a1,b1表示n滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的數(shù)表中,第i行第j列的數(shù)記為ai,j,且滿足a1,j=2j-1,ai,1=i,ai+1,j+1=ai,j+ai+1,j(i,j∈N*);又記第3行的數(shù)3,5,8,13,22,39,…為數(shù)列{bn}.則
(1)此數(shù)表中的第6行第3列的數(shù)為
20
20

(2)數(shù)列{bn}的通項(xiàng)公式為
bn=2n-1+n+1
bn=2n-1+n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=2,對(duì)于任意的p,q∈N*,有ap+q=ap+aq
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:an=
b1
2+1
-
b2
22+1
+
b3
23+1
-
b4
24+1
+…+(-1)n-1
bn
2n+1
(n∈N*)
求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)Cn=3n+λbn(n∈N*),是否存在實(shí)數(shù)λ,當(dāng)n∈N*時(shí),Cn+1>Cn恒成立,若存在,求實(shí)數(shù)λ的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是等差數(shù)列,且滿足:a1+a2+a3=6,a5=5;數(shù)列{bn}滿足:bn-bn-1=an-1(n≥2,n∈N*),b1=1.
(1)求an和bn;
(2)記數(shù)列cn=
1
bn+2n
,(n∈N*)
,若{cn}的前n項(xiàng)和為Tn,求證Tn∈[
1
3
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}中,a1=2,對(duì)于任意的p,q∈N*,有ap+q=ap+aq
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:an=
b1
2+1
-
b2
22+1
+
b3
23+1
-
b4
24+1
+…+(-1)n-1
bn
2n+1
(n∈N*)
求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)Cn=3n+λbn(n∈N*),是否存在實(shí)數(shù)λ,當(dāng)n∈N*時(shí),Cn+1>Cn恒成立,若存在,求實(shí)數(shù)λ的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案