13.化簡(jiǎn):
(1)3$\sqrt{15}$sinx+3$\sqrt{5}$cosx;
(2)$\frac{3}{2}$cosx-$\frac{\sqrt{3}}{2}$sinx;
(3)$\sqrt{3}$sin$\frac{x}{2}$+cos$\frac{x}{2}$;
(4)$\frac{\sqrt{2}}{4}$sin($\frac{π}{4}$-x)+$\frac{\sqrt{6}}{4}$cos($\frac{π}{4}$-x);
(5)sin347°cos148°+sin77°cos58°;
(6)sin164°sin224°+sin254°sin314°;
(7)sin(α+β)cos(γ-β)-cos(β+α)cos(β-γ);
(8)sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β);
(9)$\frac{tan\frac{5π}{4}+tan\frac{5π}{12}}{1-tan\frac{5π}{12}}$;
(10)$\frac{sin(α+β)-2sinαcosβ}{2sinαsinβ+cos(α+β)}$.

分析 根據(jù)兩角和差的正弦余弦正切公式以及誘導(dǎo)公式分別化簡(jiǎn)即可.

解答 解:(1)3$\sqrt{15}$sinx+3$\sqrt{5}$cosx=6$\sqrt{5}$($\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx)=6$\sqrt{5}$sin(x+$\frac{π}{6}$);
(2)$\frac{3}{2}$cosx-$\frac{\sqrt{3}}{2}$sinx=$\sqrt{3}$($\frac{\sqrt{3}}{2}$cosx-$\frac{1}{2}$sinx)$\sqrt{3}$cos(x+$\frac{π}{6}$);
(3)$\sqrt{3}$sin$\frac{x}{2}$+cos$\frac{x}{2}$=2($\frac{\sqrt{3}}{2}$sin$\frac{x}{2}$+$\frac{1}{2}$cos$\frac{x}{2}$)=2sin($\frac{x}{2}$+$\frac{π}{6}$);
(4)$\frac{\sqrt{2}}{4}$sin($\frac{π}{4}$-x)+$\frac{\sqrt{6}}{4}$cos($\frac{π}{4}$-x)=$\frac{\sqrt{2}}{2}$[$\frac{1}{2}$sin($\frac{π}{4}$-x)+$\frac{\sqrt{3}}{2}$cos($\frac{π}{4}$-x)]=$\frac{\sqrt{2}}{2}$cos($\frac{π}{6}$-$\frac{π}{4}$+x)=$\frac{\sqrt{2}}{2}$cos(x-$\frac{π}{12}$);
(5)sin347°cos148°+sin77°cos58°=sin13°cos32°+cos13°sin32°=sin45°=$\frac{\sqrt{2}}{2}$;
(6)sin164°sin224°+sin254°sin314°=-sin16°sin44°+cos16°cos44°=cos(44°+16°)=cos60°=$\frac{1}{2}$;
(7)sin(α+β)cos(γ-β)-cos(β+α)cos(β-γ)=cos(γ-β)[sin(α+β)-cos(β+α)]=$\sqrt{2}$cos(γ-β)sin(α+β-$\frac{π}{4}$);
(8)sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β)=-cos(α-β+β-γ)=-cos(α-γ);
(9)$\frac{tan\frac{5π}{4}+tan\frac{5π}{12}}{1-tan\frac{5π}{12}}$=$\frac{tan\frac{π}{4}+tan\frac{5π}{12}}{1-tan\frac{π}{4}tan\frac{5π}{12}}$=tan($\frac{π}{4}$+$\frac{5π}{12}$)=tan$\frac{2π}{3}$=-$\sqrt{3}$;
(10)$\frac{sin(α+β)-2sinαcosβ}{2sinαsinβ+cos(α+β)}$=$\frac{sin(β-α)}{cos(α-β)}$=tan(β-α).

點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn)和求值,關(guān)鍵掌握兩角和差的正弦余弦正切公式以及誘導(dǎo)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)$f(x)=\;{sin^2}\frac{x}{2}+\frac{{\sqrt{3}}}{2}sinx-\frac{1}{2}$.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.某城市在發(fā)展過(guò)程中,交通狀況逐漸受到大家更多的關(guān)注,據(jù)有關(guān)統(tǒng)計(jì)數(shù)據(jù)顯示,從6時(shí)到9時(shí),車(chē)輛通過(guò)某市某一路段的用時(shí)y(min)與車(chē)輛進(jìn)入該路段的時(shí)刻t之間的關(guān)系可近似地用函數(shù)表示為:y=-$\frac{1}{8}$t3-$\frac{3}{4}$t2+36t-$\frac{629}{4}$,則在這段時(shí)間內(nèi),通過(guò)路段用時(shí)最多的時(shí)刻是( 。
A.6時(shí)B.7時(shí)C.8時(shí)D.9時(shí)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知二次函數(shù)f(x)=x2+ax+b圖象的對(duì)稱(chēng)軸為x=$\frac{1}{2}$,且f(1)=0,數(shù)列{an}滿(mǎn)足an=f(2n+1)-f(2n)-1.
(1)求數(shù)列{an}的前30項(xiàng)和;
(2)若am,at(m,t∈N*)是數(shù)列{an}中的項(xiàng),試判斷2am+3at是否是數(shù)列{an}中的項(xiàng),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.命題P:實(shí)數(shù)a滿(mǎn)足關(guān)于x的不等式|x+2a|+|x+3|>a+1的解集為R;命題Q:實(shí)數(shù)a滿(mǎn)足關(guān)于x的不等式|x+1|+|x-1|>|x+a|的解集為R.若P與Q恰有一個(gè)為真命題,則實(shí)數(shù)a的范圍為$a≤\frac{2}{3}$或a>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知常數(shù)a≠0,f(x)=alnx+2x.
(1)當(dāng)a=-4時(shí),求f(x)的極值;
(2)當(dāng)f(x)的最小值不小于-a時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.根據(jù)下列條件解△ABC(精確到0.1):
(1)a=4,b=4,c=3;
(2)a=2,b=4,∠C=45°
(3)a=3,b=2,AB邊上的中線(xiàn)長(zhǎng)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.利用正切函數(shù)圖象解不等式.
(1)tanx≥-1;
(2)tan2x≤-1;
(3)tanx≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知a,b是互異的正數(shù),A是a,b的等差中項(xiàng),G是a,b的正的等比中項(xiàng),A與G有無(wú)確定的大小關(guān)系?

查看答案和解析>>

同步練習(xí)冊(cè)答案