【題目】已知函數(shù),.

1)求函數(shù)處的切線方程;

2)設(shè)

①當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

②當(dāng)時(shí),求函數(shù)的極大值.

【答案】12)①函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

【解析】

1)先求出導(dǎo)數(shù)值,即切線斜率,再求出切線方程;

2求出,令,求出遞增區(qū)間,令,求出遞減區(qū)間;

②求出,利用,求出單調(diào)區(qū)間,由,求出極值點(diǎn),再求出函數(shù)的極大值.

1,切線斜率

切線方程為

2)當(dāng)時(shí),,

設(shè),,即上單調(diào)遞減,

又因?yàn)?/span>

所以時(shí),,即,此時(shí)函數(shù)單調(diào)遞增,

時(shí),,即,此時(shí)函數(shù)單調(diào)遞減,

所以當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

②當(dāng)時(shí),,

,,則單調(diào)遞減,

,

使得,

故當(dāng),此時(shí)單調(diào)遞增;

當(dāng),,此時(shí)單調(diào)遞減;

,極大值

,,所以

極大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2xa|+|2x-1|(aR).

(1)當(dāng)a=-1時(shí),求f(x)2的解集;

(2)f(x)|2x+1|的解集包含集合,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是無窮數(shù)列,若存在正整數(shù)k,使得對任意,均有,則稱是間隔遞增數(shù)列,k的間隔數(shù),下列說法正確的是(

A.公比大于1的等比數(shù)列一定是間隔遞增數(shù)列

B.已知,則是間隔遞增數(shù)列

C.已知,則是間隔遞增數(shù)列且最小間隔數(shù)是2

D.已知,若是間隔遞增數(shù)列且最小間隔數(shù)是3,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電訊企業(yè)為了了解某地區(qū)居民對電訊服務(wù)質(zhì)量評價(jià)情況,隨機(jī)調(diào)查100 名用戶,根據(jù)這100名用戶對該電訊企業(yè)的評分,繪制頻率分布直方圖,如圖所示,其中樣本數(shù)據(jù)分組為,…….

1)估計(jì)該地區(qū)用戶對該電訊企業(yè)評分不低于70分的概率,并估計(jì)對該電訊企業(yè)評分的中位數(shù);

2)現(xiàn)從評分在的調(diào)查用戶中隨機(jī)抽取2人,求2人評分都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某單位的食堂中,食堂每天以10元/斤的價(jià)格購進(jìn)米粉,然后以4.4元/碗的價(jià)格出售,每碗內(nèi)含米粉0.2斤,如果當(dāng)天賣不完,剩下的米粉以2元/斤的價(jià)格賣給養(yǎng)豬場.根據(jù)以往統(tǒng)計(jì)資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂購進(jìn)了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利潤.

(1)估計(jì)該天食堂利潤不少于760元的概率;

(2)在直方圖的需求量分組中,以區(qū)間中間值作為該區(qū)間的需求量,以需求量落入該區(qū)間的頻率作為需求量在該區(qū)間的概率,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20191126日,聯(lián)合國教科文組織宣布314日為國際數(shù)學(xué)日(昵稱:),2020314日是第一個(gè)國際數(shù)學(xué)日.圓周率是圓的周長與直徑的比值,是一個(gè)在數(shù)學(xué)及物理學(xué)中普遍存在的數(shù)學(xué)常數(shù).有許多奇妙性質(zhì),如萊布尼茲恒等式,即為正奇數(shù)倒數(shù)正負(fù)交錯(cuò)相加等.小紅設(shè)計(jì)了如圖所示的程序框圖,要求輸出的值與非常近似,則①、②中分別填入的可以是(

A.,B.,

C.D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)=|xa|+|x+b|ab0.

1)當(dāng)a1,b1時(shí),求不等式fx)<3的解集;

2)若fx)的最小值為2,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐,底面為平行四邊形,且,點(diǎn)M的中點(diǎn),,且平面平面.

1)求證:平面平面;

2)當(dāng)直線與平面所成角的正切值為時(shí),求四棱錐的體積及平面將四棱錐分成的兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),為直線的傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出曲線的直角坐標(biāo)方程,并求時(shí)直線的普通方程;

2)直線和曲線交于、兩點(diǎn),點(diǎn)的直角坐標(biāo)為,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案