、已知二次函數(shù)滿足:①在x=1時有極值;②圖像過點(diǎn),且在該點(diǎn)處的切線與直線平行.
(1)求的解析式;          
(2)求函數(shù)的值域;
(3)若曲線上任意兩點(diǎn)的連線的斜率恒大于,求的取值范圍.


(1)設(shè)因為x=1處有極值,所以x=1是f(x)的對稱軸,過點(diǎn),并且,求出a,b,c的值,確定f(x).
(II)本小題涉及到復(fù)合函數(shù)的單調(diào)性問題,可以設(shè),利用導(dǎo)數(shù)研究出u(x)的單調(diào)性,求出u的取值范圍,從而求出f(u)的值域.
(III) 設(shè),
然后再解不等式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(理科班)(12分)已知R,函數(shù)e.
(1)若函數(shù)f(x)存在極大值,并記為g(m),求g(m)的表達(dá)式;
(2)當(dāng)m=0時,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù),
(Ⅰ)若,求的單調(diào)區(qū)間;
(Ⅱ)在(Ⅰ)的條件下,對,都有,求實(shí)數(shù)的取值范圍;
(Ⅲ)若上單調(diào)遞增,在上單調(diào)遞減,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品, 根據(jù)市場調(diào)查與預(yù)測, 甲產(chǎn)品的利潤與投資成正比, 其關(guān)系如圖1, 乙產(chǎn)品的利潤與投資的算術(shù)平方根成正比, 其關(guān)系如圖2 (注: 利潤與投資的單位: 萬元).

(Ⅰ) 分別將甲、乙兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(Ⅱ) 該企業(yè)籌集了100萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品, 問: 怎樣分配這100萬元資金, 才能使企業(yè)獲得最大利潤, 其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若曲線在點(diǎn)P處的切線的斜率等于3,則點(diǎn)P的坐標(biāo)為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線在點(diǎn)(2,2)處的切線方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線在x=-1處的切線方程為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線在點(diǎn)(1,3)處的切線方程是(       )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)f0(x)=cosx,f1(x)= f0'(x),f2(x)= f1'(x),…,fn+1(x)= fn'(x),n∈N*,則f2011 (x)=         .

查看答案和解析>>

同步練習(xí)冊答案