袋中有五張卡片,其中紅色卡片三張,標(biāo)號分別為1,2,3;藍(lán)色卡片兩張,標(biāo)號分別為1,2;從五張卡片中,任取兩張,這兩張卡片顏色不同且標(biāo)號之和小于4的概率為
 
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:從五張卡片中任取兩張的所有可能情況,用列舉法求得有10種情況,其中兩張卡片的顏色不同且標(biāo)號之和小于4的有3種情況,從而求得所求事件的概率.
解答: 解:從五張卡片中任取兩張的所有可能情況有如下10種:
12,紅13,紅1藍(lán)1,紅1藍(lán)2,紅23,
2藍(lán)1,紅2藍(lán)2,紅3藍(lán)1,紅3藍(lán)2,藍(lán)1藍(lán)2
其中兩張卡片的顏色不同且標(biāo)號之和小于4的有3種情況,
1藍(lán)1,紅1藍(lán)2,紅2藍(lán)1,
故所求的概率為P=
3
10

故答案為:
3
10
點評:本題考查古典概型問題,可以列舉出試驗發(fā)生包含的事件和滿足條件的事件,應(yīng)用列舉法來解題是這一部分的最主要思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的體積為V,則三棱錐C1-ABC的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個焦點恰為橢圓
x2
4
+y2
=1的兩個頂點,且離心率為2,則該雙曲線的標(biāo)準(zhǔn)方程為( 。
A、x2-
y2
3
=1
B、
x2
4
-
y2
12
=1
C、
x2
3
-y2
=1
D、
x2
12
-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校餐廳每天供應(yīng)500名學(xué)生用餐,每星期一有A、B兩種菜可供選擇.調(diào)查表明,凡是在這星期一選A菜的,下星期一會有20%改選B菜;而選B菜的,下星期一會有30%改選A菜.用an表示第n個星期一選A的人數(shù),如果a1=428,則a4的值為(  )
A、324B、316
C、304D、302

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序框圖,執(zhí)行框圖所表達(dá)的算法,則輸出的結(jié)果是( 。
A、2B、6C、24D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在圓的一條直徑上,任取一點作與該直徑垂直的弦,則其弦長超過該圓的內(nèi)接等邊三角形的邊長概率為( 。
A、
1
4
B、
1
3
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列1,2cosθ,22cos2θ,23cos3θ,…,前100項之和為0,則θ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=3x+3-x,g(x)=3x-3-x的定義域均為R,則( 。
A、f(x)與g(x),均為奇函數(shù)
B、f(x)與g(x)均為偶函數(shù)
C、f(x)為奇函數(shù),g(x)為偶函數(shù)
D、f(x)為偶函數(shù),g(x)為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中,點A(1,1,2)關(guān)于坐標(biāo)原點的對稱點的坐標(biāo)為
 

查看答案和解析>>

同步練習(xí)冊答案