(本小題滿分12分)
已知函數(shù).
(1)設,討論的單調性;
(2)若對任意,,求實數(shù)的取值范圍.
(1)增區(qū)間為,減區(qū)間為.(2).
解析試題分析:(1),定義域為,
,
設則,
上是減函數(shù),又,
于是的增區(qū)間為,減區(qū)間為.
(2)由已知.
當時,,不合題意;
當時,,由,可得.
設.……8分
設,方程的判別式,
若在上是增函數(shù),
又,
若,存在,使得,對任意,又不合題意.
綜上所述,實數(shù)的取值范圍是.
考點:本題主要考查應用導數(shù)研究函數(shù)的單調性及極值,根據(jù)不等式成立求參數(shù)值。
點評:典型題,本題屬于導數(shù)應用中的基本問題,(II)通過構造函數(shù),并研究函數(shù)的單調性,函數(shù)值與最值比較,達到解題目的。分類討論,排除可能情況,值得關注。本題涉及對數(shù)函數(shù),要特別注意函數(shù)的定義域。
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)若在上單調遞增,求的取值范圍;
(2)若定義在區(qū)間D上的函數(shù)對于區(qū)間上的任意兩個值總有以下不等式成立,則稱函數(shù)為區(qū)間上的 “凹函數(shù)”.試證當時,為“凹函數(shù)”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分13分)已知函數(shù),.其中表示不超過的最大整數(shù),例如.
(Ⅰ)試判斷函數(shù)的奇偶性,并說明理由;
(Ⅱ)求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(滿分14分) 定義在上的函數(shù)同時滿足以下條件:
①在上是減函數(shù),在上是增函數(shù);②是偶函數(shù);
③在處的切線與直線垂直.
(1)求函數(shù)的解析式;
(2)設,求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)為常數(shù))是實數(shù)集上的奇函數(shù),函數(shù)
在區(qū)間上是減函數(shù).
(Ⅰ)求實數(shù)的值;
(Ⅱ)若在上恒成立,求實數(shù)的最大值;
(Ⅲ)若關于的方程有且只有一個實數(shù)根,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)為自然對數(shù)的底數(shù)).
當時,求的單調區(qū)間;若函數(shù)在上無零點,求最小值;
若對任意給定的,在上總存在兩個不同的),使成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)己知函數(shù)
(1)求的單調區(qū)間;
(2)若時,恒成立,求的取值范圍;
(3)若設函數(shù),若的圖象與的圖象在區(qū)間上有兩個交點,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是定義在上的奇函數(shù),且當時,.
(Ⅰ)求的解析式;
(Ⅱ)直接寫出的單調區(qū)間(不需給出演算步驟);
(Ⅲ)求不等式解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com