已知函數(shù)f(x)=-cosx,下列結(jié)論錯誤的是( 。
A、f(x)的最小正周期是2π
B、函數(shù)在區(qū)間[0,
π
2
]上是增函數(shù)
C、函數(shù)f(x)的圖象關(guān)于直線x=0對稱
D、函數(shù)f(x)是奇函數(shù)
考點:命題的真假判斷與應(yīng)用
專題:簡易邏輯
分析:由函數(shù)f(x)=-cosx,可知:f(x)的最小正周期是2π,函數(shù)在區(qū)間[0,
π
2
]上是增函數(shù),函數(shù)f(x)是偶函數(shù)其圖象關(guān)于直線x=0對稱.即可得出.
解答: 解:由函數(shù)f(x)=-cosx,
可知:f(x)的最小正周期是2π,函數(shù)在區(qū)間[0,
π
2
]上是增函數(shù),函數(shù)f(x)是偶函數(shù)其圖象關(guān)于直線x=0對稱.
因此A.B.C.正確,而D是錯位的.
故選:D.
點評:本題考查了余弦函數(shù)的性質(zhì),考查了推理能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出如下五個結(jié)論:
①若△ABC為鈍角三角形,則sinA<cosB.
②存在區(qū)間(a,b)使y=cosx為減函數(shù)而sinx<0
③函數(shù)y=2x3-3x+1的圖象關(guān)于點(0,1)成中心對稱
④y=cos2x+sin(
π
2
-x)既有最大、最小值,又是偶函數(shù)
⑤y=|sin(2x+
π
4
)|最小正周期為π
其中正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:方程x2+y2+4mx-2y+5m=0表示圓,命題q:向量
a
=(m,-1,
2
)
的模小于2,若p∧q為真命題,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的是( 。
A、用簡單隨機抽樣、系統(tǒng)抽樣和分層抽樣的方法抽取樣本時,要求個體被抽取到的概率相等,但是在系統(tǒng)抽樣中,如果不能平均分組時,除剔除的某些個體被抽取到的概率就和后面參與抽取的其它個體被抽取的概率不同
B、在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等
C、在相同條件下的重復(fù)試驗中,某一隨機事件出現(xiàn)的頻率就是該隨機事件的概率
D、在一定條件下,概率為0的事件一定是不可能事件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若把一個正方形用斜二測畫法畫出,有下列說法:
①所得圖形一定是矩形;
②所得圖形一定是平行四邊形;
③所得圖形一定是梯形;
④原正方形的中心一定是所得圖形對角線的交點.
其中正確的是( 。
A、①②③④B、②④
C、③④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=2,a1+a4=7
(1)求數(shù)列{an}的通項公式
(2)若數(shù)列{an}的前n項和為Sn,求S8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
1
2
sin2x是( 。
A、最小正周期為2π的偶函數(shù)
B、最小正周期為2π的奇函數(shù)
C、最小正周期為π的偶函數(shù)
D、最小正周期為π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一條直線與兩條平行線中的一條垂直,那么它和另一條直線( 。
A、垂直B、平行C、異面D、相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三角形ABC中,AC⊥BC,平面PAC⊥平面ABC,PA=PC=AC=2,BC=3,E,F(xiàn)分別是PC,PB的中點,記平面AEF與平面ABC的交線為直線l.
(1)求證:直線l∥BC;
(2)若直線l上一點Q滿足BQ∥AC,求平面PAC與平面EQB的夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案