精英家教網 > 高中數學 > 題目詳情

已知圓C1:(x+2)2+y2=4及點C2(2,0),在圓C1上任取一點P,連接C2P,做線段C2P的中垂線交直線C1P于點M.

(1)當點P在圓C1上運動時,求點M的軌跡E的方程;

(2)設軌跡E與x軸交于A1,A2兩點,在軌跡E上任取一點Q(x0,y0)(y0≠0),直線QA1,QA2分別交y軸于D,E兩點,求證:以線段DE為直徑的圓C過兩個定點,并求出定點坐標.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平面直角坐標系xoy中,已知圓C1:(x-1)2+y2=25和圓C2:(x-4)2+(y-5)2=16
(1)若直線l1經過點P(2,-1)和圓C1的圓心,求直線l1的方程;
(2)若點P(2,-1)為圓C1的弦AB的中點,求直線AB的方程;
(3)若直線l過點A(6,0),且被圓C2截得的弦長為4
3
,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•江蘇一模)如圖,在平面直角坐標系xOy中,已知圓C1:(x+1)2+y2=1,圓C2:(x-3)2+(y-4)2=1
(1)若過點C1(-1,0)的直線l被圓C2截得的弦長為
65
,求直線l的方程;
(2)設動圓C同時平分圓C1的周長、圓C2的周長.
①證明:動圓圓心C在一條定直線上運動;
②動圓C是否經過定點?若經過,求出定點的坐標;若不經過,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C1:(x-2cosθ)2+(y-2sinθ)2=1與圓C2x2+y2=1,P,Q分別為圓C1與圓C2上的動點,則|PQ|的最大值為
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動圓M同時與圓C1及圓C2外切,則動圓圓心M的軌跡方程為
x2-
y2
8
=1(x<0)
x2-
y2
8
=1(x<0)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C1:(x-1)2+(y-1)2=2,圓C2:(x-3)2+(y-3)2=2,則兩圓的內公切線方程為(    )

A.x-y-3=0                                   B.x+y-4=0

C.x+y-3=0                                   D.x-y-4=0

查看答案和解析>>

同步練習冊答案