在直角坐標系中,已知點列P1(1,-),P2(2,),P3(3,-),…,Pn(n,),…,其中n是正整數(shù).連接P1 P2的直線與x軸交于點X1(x1,0),連接P2 P3的直線與x軸交于點X2(x2,0),…,連接Pn Pn+1的直線與x軸交于點Xn(xn,0),….
(1)求數(shù)列{an}的通項公式;
(2)依次記△X1P2X2的面積為S1,△X2P3X3的面積為S3,…,△XnPn+1Xn的面積為Sn,…試求無窮數(shù)列{Sn}的各項和.
【答案】分析:(1)由題設知直線PnPn+1的方程為:=,令y=0,得xn=x=
(2)由,知數(shù)列{an}是首項為,公比為的等比數(shù)列,由此能求出無窮數(shù)列{Sn}的各項和.
解答:解:(1)∵Pn(n,),Pn+1(n+1,),
∴直線PnPn+1的方程為:=,
∴令y=0,得,
整理,得x-n=
∴xn=x=

(2)由題設條件能夠?qū)С?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131024183014176780744/SYS201310241830141767807019_DA/14.png">,
∴數(shù)列{an}是首項為,公比為的等比數(shù)列,
∴S=Sn==
點評:本題考查數(shù)列現(xiàn)解析幾何的綜合運用,解題時要認真審題,注意挖掘題設中的隱含條件,合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系中,已知△ABC的三個頂點的坐標,求:
(1)直線AB的一般式方程;
(2)AC邊上的高所在直線的斜截式方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系中,已知射線OA:x-y=0(x≥0),OB:x+
3
y=0(x≥0),過點P(1,0)作直線分別交射線OA,OB于A,B點.
(1)當AB中點為P時,求直線AB的方程;
(2)在(1)的條件下,若A、B兩點到直線l:y=mx+2的距離相等,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系中,已知A(cosx,sinx),B=(1,1),O為坐標原點,
OA
+
OB
=
OC
,f(x)=|
OC
|
2

(Ⅰ)求f(x)的對稱中心的坐標及其在區(qū)間[-π,0]上的單調(diào)遞減區(qū)間;
(Ⅱ)若f(x0)=3+
2
,x0∈[
π
2
,
4
]
,求tanx0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•普陀區(qū)一模)在直角坐標系中,已知點列P1(1,-
1
2
),P2(2,
1
22
),P3(3,-
1
23
),…,Pn(n,(-
1
2
)n
),…,其中n是正整數(shù).連接P1 P2的直線與x軸交于點X1(x1,0),連接P2 P3的直線與x軸交于點X2(x2,0),…,連接Pn Pn+1的直線與x軸交于點Xn(xn,0),….
(1)求數(shù)列{an}的通項公式;
(2)依次記△X1P2X2的面積為S1,△X2P3X3的面積為S3,…,△XnPn+1Xn的面積為Sn,…試求無窮數(shù)列{Sn}的各項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系中,已知射線OA:x-y=0(x≥0),OB:
3
x+3y=0(x≥0),過點P(a,0)(a>0)作直線l分別交射線OA,OB于A,B兩點,且
AP
=2
PB
,則直線l的斜率為
 

查看答案和解析>>

同步練習冊答案