η | 0 | 1 | 2 |
P | $\frac{1}{4}$ | $\frac{1}{2}$ | $\frac{1}{4}$ |
分析 有放回的取兩次球,其中白球數(shù)η的取值為0(兩次均取黑球),1(一次取白球,另一次取黑球),2(兩次均取白球).分別求出相應(yīng)的概率,由此能求出η的分布列.
解答 解:有放回的取兩次球,其中白球數(shù)η的取值為0(兩次均取黑球),1(一次取白球,另一次取黑球),2(兩次均取白球).
P(η=0)=$\frac{1}{2}×\frac{1}{2}$=$\frac{1}{4}$,
P(η=1)=$\frac{1}{2}×\frac{1}{2}+\frac{1}{2}×\frac{1}{2}$=$\frac{1}{2}$,
P(η=2)=$\frac{1}{2}×\frac{1}{2}$=$\frac{1}{4}$.
∴η的分布列為:
η | 0 | 1 | 2 |
P | $\frac{1}{4}$ | $\frac{1}{2}$ | $\frac{1}{4}$ |
η | 0 | 1 | 2 |
P | $\frac{1}{4}$ | $\frac{1}{2}$ | $\frac{1}{4}$ |
點評 本題考查離散型隨機變量的分布列的求法,是中檔題,解題時要認真審題,注意相互獨立事件概率乘法公式的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\sqrt{2}$) | B. | (1,$\sqrt{2}$) | C. | ($\frac{\sqrt{2}}{2}$,1) | D. | ($\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -5 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3\sqrt{2}}{2}$ | B. | $\frac{9}{2}$ | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{8}π$ | B. | $\frac{{\sqrt{6}}}{4}π$ | C. | $\frac{{\sqrt{3}}}{4}π$ | D. | $\frac{{\sqrt{3}}}{12}π$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com